27 правило крамера теорема с док ом

Правило Крамера

Рассмотрим частный случай системы
линеных уравнений (15.1),
когда
,
то есть когда число уравнений совпадает
с числом неизвестных. Именно такие
системы при
или
рассматриваются
в школе.

Если число уравнений равно числу
неизвестных, то матрица
исходной
системы — квадратная, порядка
,
и
 —
столбцы высоты
.
Предположим, что
.
Тогда по теореме
14.1
существует обратная матрица.
Умножив слева обе части равенства
 (15.2)
на
,
получим

Таким образом, система уравнений (15.1)
имеет единственное решение и оно в
матричной форме может быть записано в
виде

(15.3)

Это так называемый матричный способ
решения системы линейных уравнений.

Введем следующие обозначения. Пусть
,
 —
определитель матрицы, полученной из
матрицы
заменой
столбца с номером
на
столбец
свободных
членов,
:

        Теорема
15.1   (Правило Крамера)
Если в системе
линейных
уравнений с
неизвестными
,
то система имеет решение и притом
единственное. Это решение задается
формулами

        Доказательство.    
По теореме
14.1
обратная матрица находится
по формуле

где

алгебраические дополнения. Тогда
из (15.3)
следует, что

Заметим, что по формуле (14.13)
разложение определителя
по
первому столбцу в точности совпадает
с первым элементом матрицы-столбца в
правой части последнего равенства,
разложение определителя
по
второму столбцу дает второй элемент
матрицы-столбца и т.д. Поэтому
,
откуда и следует утверждение теоремы.
    

        Пример 15.1
  Решите систему уравнений

Решение. Выписываем матрицу системы
и
столбец свободных членов
.

Находим определитель системы:
.
Определитель отличен от нуля, следовательно,
можно применить правило Крамера. Находим
дополнительные определители:

Итак,

Ответ:
.
        

        Замечание
15.1   При кажущейся
простоте правила Крамера применяется
оно для систем более, чем из трех
уравнений, только в каких-то исключительных
случаях. Дело в том, что вычисление
определителей требует выполнения
большого числа арифметических операций
и существует способ, требующий меньшей
вычислительной работы. Этот способ
будет описан позже.         

        Замечание
15.2   При решении системы
уравнений приходится выполнять довольно
большой объем вычислений. Поэтому велика
вероятность ошибки. Чтобы обнаружить
эту ошибку, рекомендуется выполнить
проверку ответа, то есть подставить
полученные значения неизвестных в
уравнения системы. Если все уравнения
превратятся в верные равенства, то
решение найдено верно. В противном
случае при вычислениях где-то допущена
ошибка.         

Соседние файлы в папке Анал_Геом

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Метод Крамера – теорема, примеры решений

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

,

Если , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

,

.

Ответ

, .

Задача

Решить систему уравнений методом Крамера:

Решение

Ответ

= = = = = =

Проверка

* = * = =

* = * = =

* = * = =

Уравнение имеет единственное решение.

Ответ

= = =

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

, , .

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

В этом примере – некоторое вещественное число. Находим главный определитель:

Находим определители при неизвестных:

Используя формулы Крамера, находим:

, .

Ответ

,

.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

,

,

,

.

Ответ

Итак, мы нашли корни системы линейного уравнения:

,

,

,

.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

Решение методом Крамера в Excel

Метод Крамера для решения СЛАУ

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Метод Крамера — вывод формул

Найти решение системы линейных уравнений вида:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

В этой системе x 1 , x 2 , . . . , x n – неизвестные переменные,

a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n – числовые коэффициенты,

b 1 , b 2 , . . . , b n – свободные члены.

Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0

p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q

Приступаем к нахождению неизвестной переменной x 1 :

  • Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :

A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n

Если воспользоваться свойствами определителя, то получится:

А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0

A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Предыдущее равенство будет иметь следующий вид:

x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A

Таким же образом находим все оставшиеся неизвестные переменные.

∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Примеры решения СЛАУ методом Крамера

Найти решение неоднородной системы линейных уравнений методом Крамера:

3 x 1 – 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2

Основная матрица представлена в виде 3 – 2 2 3 .

Мы можем вычислить ее определитель по формуле:

a 11 a 12 a 21 a 22 = a 11 × a 22 – a 12 × a 21 : ∆ = 3 – 2 2 3 = 3 × 3 – ( – 2 ) × 2 = 9 + 4 = 13

Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 – 2 2 3

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

Находим эти определители:

∆ x 1 = 5 6 – 2 2 3 = 5 6 × 3 – 2 ( – 2 ) = 5 2 + 4 = 13 2

∆ x 2 = 3 5 6 2 2 = 3 × 2 – 5 6 × 2 = 6 – 5 3 = 13 3

Находим неизвестные переменные по следующим формулам

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆

x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2

x 2 = ∆ x 2 ∆ = 3 13 = 1 3

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

3 1 2 – 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x 1 = 1 2 , x 2 = 1 3

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2 y + x + z = – 1 – z – y + 3 x = – 1 – 2 x + 3 z + 2 y = 5

За основную матрицу нельзя брать 2 1 1 – 1 – 1 – 3 – 2 3 2 .

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x + 2 y + z = – 1 3 x – y – z = – 1 – 2 x + 2 y + 3 z = 5

С этого момента основную матрицу хорошо видно:

1 2 1 3 – 1 – 1 – 2 2 3

Вычисляем ее определитель:

∆ = 1 2 1 3 – 1 – 1 – 2 2 3 = 1 × ( – 1 ) × 3 + 2 × ( – 1 ) ( – 2 ) + 1 × 2 × 3 – 1 ( – 1 ) ( – 2 ) – 2 × 3 × 3 – – 1 ( – 1 ) × 2 = – 11

Записываем определители и вычисляем их:

∆ x = – 1 2 1 – 1 – 1 – 1 5 2 3 = ( – 1 ) ( – 1 ) × 3 + 2 ( – 1 ) × 5 + 1 ( – 1 ) × 2 – 1 ( – 1 ) × 5 – 2 ( – 1 ) × 3 – – 1 ( – 1 ) × 2 = 0

∆ y = 1 – 1 1 3 – 1 – 1 – 2 5 3 = 1 ( – 1 ) × 3 + ( – 1 ) ( – 1 ) ( – 2 ) + 1 × 3 × 5 – 1 ( – 1 ) ( – 2 ) – ( – 1 ) – – 1 ( – 1 ) × 2 = 22

∆ z = 1 2 – 1 3 – 1 – 1 – 2 2 5 = 1 ( – 1 ) × 5 + 2 ( – 1 ) ( – 2 ) + ( – 1 ) × 3 × 2 – ( – 1 ) ( – 1 ) ( – 2 ) – 2 × 3 × 5 – – 1 ( – 1 ) × 2 = – 33

Находим неизвестные переменные по формулам:

x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .

x = ∆ x ∆ = 0 – 11 = 0

y = ∆ y ∆ = 22 – 11 = – 2

z = ∆ z ∆ = – 33 – 11 = 3

Выполняем проверку — умножаем основную матрицу на полученное решение 0 – 2 3 :

1 2 1 3 – 1 – 1 – 2 2 3 × 0 – 2 3 = 1 × 0 + 2 ( – 2 ) + 1 × 3 3 × 0 + ( – 1 ) ( – 2 ) + ( – 1 ) × 3 ( – 2 ) × 0 + 2 ( – 2 ) + 3 × 3 = – 1 – 1 5

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x = 0 , y = – 2 , z = 3

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Пример 5. Решить систему линейных уравнений методом Крамера:

.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a – некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим – на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки – элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки – элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы – (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-kramera/

http://function-x.ru/systems_kramer.html

Рассмотрим систему N Линейных уравнений с N неизвестными:

(20)

У которой определитель матрицы системы (Определитель системы) не равен нулю, т. е.

Такую систему называем системой линейных уравнений крамеровсого типа. Далее через , будем обозначать определитель, полученный из D заменой I-го столбца столбцом свободных членов:

Разлагая определитель , по элементам I-го столбца, представим его в виде:

(21)

Где , алгебраические дополнения элементов определителя D.

Теорема 10 (Теорема Крамера). Система линейных уравнений крамеровского типа имеет единственное решение, которое находится по формулам:

. (22)

Способ нахождения решений системы N линейных уравнений с N неизвестными и ненулевым определителем называется Правилом Крамера, а формулы называются Формулами Крамера.

Доказательство. Сначала допустим, что решение системы (20), и покажем, что оно находится по формулам (22). В силу определения системы справедливы верные числовые равенства:

Умножив первое из этих равенств на ,второе на , и т. д. N-е на

И сложив почленно получим равенство:

.

По теореме 6 коэффициент равен D , по следствию теоремы 6 все коэффициенты у ,…, равны нулю, правая часть равенства по формуле (21) равна и равенство принимает вид:

.

Аналогично получаем равенства:

Так как , то отсюда находим, что

,

Т. е. решения находятся по формулам (22).

Покажем, что числа, найденные по формулам (22), удовлетворяют уравнениям системы (20). Имеем

.

Эта сумма равна , так как по теореме 6 коэффициент у Равен d, по следствию теоремы 6 коэффициенты у ,…, равны нулю и числа (22) удовлетворяют уравнениям (22). Аналогично устанавливается, что числа (22) удовлетворяют остальным уравнениям системы (20).

Теорема доказана.

Следствие 1. Если система систему n линейных уравнений с n неизвестными не имеет решений или имеет бесконечно много решений, то ее определитель равен нулю.

Действительно, если бы ее определитель был отличен от нуля, то по теореме 9 она бы имела бы единственное решение. Получили противоречие.

Следствие 2. Если система систему n линейных однородных уравнений n неизвестными имеет ненулевое решение, то ее определитель равен нулю.

Действительно, если бы ее определитель был не равен нулю, то по теореме 9 она имела бы единственной нулевое решение. Получили противоречие.

Пример 9. Решить систему

Составим и вычислим определитель системы:

Так как он не равен, то вычислим определители :

.

Отсюда по формулам Крамера находим:

.

Решение системы (2,-1,-1).

< Предыдущая   Следующая >

     
Существует частный случай, когда решение системы линейных уравнений можно представить в явном виде. Соответствующая теорема носит название “Правило Крамера” и имеет важное значение в теоретических исследованиях.

     
Правило Крамера. Пусть матричное уравнение

описывает систему  n  линейных уравнений с  n  неизвестными.

     
Если , то система (1) является совместной и имеет единственное решение, описываемое формулой

  (2)

где ;  – определитель, полученный из определителя  D  заменой   i-го столбца столбцом свободных членов матрицы  B:

  (3)

Доказательство теоремы разобъем на три части:

  1. Решение системы (1) существует и является единственным.
  2. Равенства (2) являются следствием матричного уравнения (1).
  3. Равенства (2) влекут за собой матричное уравнение (1).

     
Так как , то существует и при том единственная, обратная матрица .

     
Умножая обе части матричного уравнения (1) слева на , получаем решение этого уравнения:

  (4)

     
Единственность обратной матрицы доказывает первую часть теоремы.

     
Перейдем к доказательству взаимно-однознаяного соответствия между формулами (1) и (2).

     
Используя формулу (4), получим выражение для  i-го элемента. Для этого нужно умножить  i-ую строку матрицы

 на столбец  B.

     
Учитывая, что  i-ая строка присоединенной матрицы составлена из алгебраических дополнений , получаем следующий результат:

  (5)

Сумма в правой части этого равенства представляет собой разложение определителя Di по элементам  i-го столбца и, следовательно,

  (6)

     
Вывод формул Крамера завершен. Покажем теперь, что выражения

  (7)

влекут за собой матричное уравнение (1).

     
Умножим обе части уравнения (7) на и выполним суммирование по индексу  i:

  (8)

     
Изменим порядок суммирования в правой части полученного выражения:

  (9)

     
Согласно Лемме 1,

  (10)

где  – дельта символ Кронекера.

     
Учитывая, что дельта символ  снимает суммирование по одному из индексов, получаем требуемый результат:

  (11)

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Теорема Крамера

Пусть задана система n уравнений с n неизвестными

    [ begin{cases}  a_{11}x_{1} + a_{12}x_{2} + ldots + a_{1n}x_{n} = b_{1} \  a_{21}x_{1} + a_{22}x_{2} + ldots + a_{2n}x_{n} = b_{2} \  .................................................  \  a_{n1}x_{1} + a_{n2}x_{2} + ldots + a_{nn}x_{n} = b_{n} end{cases} ]

A – матрица этой системы, а B – столбец свободных членов

    [ A = begin{pmatrix} a_{11} & a_{12} & cdots & a_{1n} \ a_{21} & a_{22} & cdots & a_{2n} \          cdots & cdots & cdots & cdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{pmatrix} text{ },text{ } B= begin{pmatrix} b_{1}\ b_{2}\          cdots\ b_{n} end{pmatrix} ]

Если определитель матрицы системы Delta = det A neq 0, то системы линейных уравнений (1) имеет единственное решение, которое вычисляется по формулам

    [    x_{i} = frac{Delta _{i}}{Delta} text{ },text{ } i = overline{1, n} ]

где Delta _{i} – определители матриц, которые получаются из матрицы A заменой i-го столбца на столбец свободных членов B.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *