5×2 x 108 0 теорема виета

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
– с помощью дискриминанта
– с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x – 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 – 5&6/5z +1/7z^2
Результат: ( 3frac<1> <3>– 5frac<6> <5>z + frac<1><7>z^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+1<,>4=0, quad 8x^2-7x=0, quad x^2-frac<4><9>=0 )
имеет вид
( ax^2+bx+c=0, )
где x – переменная, a, b и c – числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x – переменная, a, b и c – некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 – неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ <1,2>= pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac<2a>+left( frac<2a>right)^2- left( frac<2a>right)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ <1,2>= frac < -b pm sqrt> <2a>), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac <2a>).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Теорема Виета

Теорема Виета:

Сумма корней приведённого квадратного уравнения

равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

Если приведённое квадратное уравнение имеет вид

то его корни равны:

,

где D = p 2 – 4q. Чтобы доказать теорему, сначала найдём сумму корней:

,

а теперь найдём их произведение:

Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

называются формулами Виета.

Примечание: если дискриминант равен нулю (D = 0), то подразумевается, что уравнение имеет не один корень, а два равных корня.

Обратная теорема

Теорема:

Если сумма двух чисел равна -p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

Решение: Так как

очевидно, что корни равны 1 и 2:

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

1 2 – 3 · 1 + 2 = 0

2 2 – 3 · 2 + 2 = 0.

Пример 2. Найти корни уравнения:

Методом подбора находим, что корни равны -3 и -5:

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

Решение: Так как x1 = -3, x2 = 6 корни уравнения x 2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:

Следовательно, искомое уравнение:

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

-5x²+18x-13=0 (минус 5 умножить на x в квадрате плюс 18 умножить на x минус 13 равно 0) решить через дискриминант и по теореме Виета, найти корни.

Калькулятор квадратных уравнений

Введите данные:

Округление:

Уравнение:

(a * x^ <2>+ b * x + c) = (-5 * x^ <2>+ 18 * x – 13) = 0

Дискриминант:

(D = b^ <2>– 4 * a * c) = (18^ <2>– 4 *(-5) *(-13)) = (324 – 260) = 64

Корни квадратного уравнения:

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
(fracx^<2>+frac*x+frac) = (x^<2>+frac<18><-5>*x+frac<-13><-5>) = (x^ <2>-3.6 * x + 2.6)

Итого, имеем приведенное уравнение:
(x^ <2>-3.6 * x + 2.6 = 0)

Теорема Виета выглядит следующим образом:
(x_<1>*x_<2>=c)
(x_<1>+x_<2>=-b)

Мы получаем следующую систему уравнений:
(x_<1>*x_<2>=2.6)
(x_<1>+x_<2>=3.6)

Методом подбора получаем:
(x_ <1>= 1)
(x_ <2>= 2.6)

Разложение на множители

Разложение происходит по формуле:
(a*(x-x_<1>)*(x-x_<2>) = 0)

То есть у нас получается:
(-5*(x-1)*(x-2.6) = 0)

источники:

http://izamorfix.ru/matematika/algebra/teorema_vieta.html

http://calcon.ru/5xz2v18x-13p0p0-reshit/

Запишемо рівняння відносно x.

2x-3y=1

2x=1+3y

x=frac{1}{2}+frac{3}{2}y

При чому y ∈ R;

Немає сталої пари чисел, як розв’якзу. Підставте будь-яке раціональне число замість <em>y</em> і буде вам пара)

…………………………

— 4  1/6 : 1/6=- 25/6 : 1/6=-25/6* 6/1=-25/1=-25

-11/18 — 169/18=(-11-169)/18=-180/18=-10

3 3/14* (-14)=45/14* (- 1/14=)-45/1=-45

4) a1 = 3,6; d = 0,4; a(n) = 6,4

a(n) = a1 + d(n — 1)

6,4 = 3,6 + 0,4(n — 1) = 3,6 + 0,4n — 0,4 = 3,2 + 0,4n

0,4n = 6,4 — 3,2 = 3,2

n = 3,2/0,4 = 8

Это 8 член прогрессии.

6) 2x — 1 = b1; x + 3 = b2 = b1*q; x + 15 = b3 = b1*q^2

{ b1 = 2x — 1

{ b1*q = (2x — 1)*q = x + 3

{ b1*q^2 = (2x — 1)*q^2 = x + 15

Преобразуем

{ b1 = 2x — 1

{ q = (x + 3)/(2x — 1)

{ (2x — 1)*q*q = (x + 3)(x + 3)/(2x — 1) = x + 15

(x + 3)^2 = (2x — 1)(x + 15)

x^2 + 6x + 9 = 2x^2 + 29x — 15

0 = x^2 + 23x — 24 = 0

(x — 1)(x + 24) = 0

x1 = 1;

Прогрессия b1 = 1; q = (x+3)/(2x-1) = 4/1 = 4; b2 = x+3 = 4; b3 = x+15 = 16

x2 = -24;

Прогрессия b1 = -49; q = (x+3)/(2x-1) = 21/49 = 3/7;

b2 = x+3 = -21; b3 = x+15 = -9

Опубликовано 3 года назад по предмету
Алгебра
от Неформал666

  1. Ответ

    Ответ дан
    Paul2910

    По теореме Виета произведение корней квадратного трёхчлена равняется свободному члену, в данном случае равняется -108.

  2. Ответ

    Ответ дан
    marina3639

    Корінь (0,0)

    Область визначення xєR

    Мінімум (0,0)

    Перетин з віссю ординат (0, 0)

Самые новые вопросы

Julia2101

Математика — 3 года назад

Решите уравнения:
а) 15 4 ∕19 + x + 3 17∕19 = 21 2∕19;
б) 6,7x — 5,21 = 9,54

na2005stud

Информатика — 3 года назад

Помогите решить задачи на паскаль.1)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти произведение всех элементов массива.2)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти сумму четных элементов массива.3)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти максимальный элемент массива.4)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти максимальный элемент массива среди элементов,
кратных 3.

Оксаночка1233

География — 3 года назад

Почему япония — лидер по выплавке стали?

Анимешка2

Математика — 3 года назад

Чему равно: 1*(умножить)х?     0*х?

laraizotova

Русский язык — 3 года назад

В каком из предложений пропущена одна (только одна!) запятая?1.она снова умолкла, точно некий внутренний голос приказал ей замолчать и посмотрела в зал. 2.и он понял: вот что неожиданно пришло к нему, и теперь останется с ним, и уже никогда его не покинет. 3.и оба мы немножко удовлетворим свое любопытство.4.впрочем, он и сам только еле передвигал ноги, а тело его совсем застыло и было холодное, как камень. 5.по небу потянулись облака, и луна померкла. 

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

$$ x_1 = frac{8+sqrt{145}}{81}, quad x_2 = frac{8-sqrt{145}}{81} $$

а не в такой: ( x_1 = 0,247; quad x_2 = -0,05 )

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac{1}{3} — 5frac{6}{5} z + frac{1}{7}z^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Примеры подробного решения >>

Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+1{,}4=0, quad 8x^2-7x=0, quad x^2-frac{4}{9}=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения
называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x — переменная, a, b и c — некоторые числа,
причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и
число c — свободным членом.

В каждом из уравнений вида ax2+bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название:
квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x2 равен 1, называют приведённым квадратным уравнением.
Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax2+bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют
неполным квадратным уравнением. Так, уравнения -2x2+7=0, 3x2-10x=0, -4x2=0 — неполные
квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax2+c=0, где ( c neq 0 );
2) ax2+bx=0, где ( b neq 0 );
3) ax2=0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax2+c=0 при ( c neq 0 ) переносят его свободный член в правую часть
и делят обе части уравнения на a:
( x^2 = -frac{c}{a} Rightarrow x_{1,2} = pm sqrt{ -frac{c}{a}} )

Так как ( c neq 0 ), то ( -frac{c}{a} neq 0 )

Если ( -frac{c}{a}>0 ), то уравнение имеет два корня.

Если ( -frac{c}{a}<0 ), то уравнение не имеет корней (квадратный корень из отрицательного числа извлекать нельзя).

Для решения неполного квадратного уравнения вида ax2+bx=0 при ( b neq 0 ) раскладывают его левую часть на множители
и получают уравнение
( x(ax+b)=0 Rightarrow left{ begin{array}{l} x=0 \ ax+b=0 end{array} right. Rightarrow left{ begin{array}{l} x=0 \ x=-frac{b}{a} end{array} right. )

Значит, неполное квадратное уравнение вида ax2+bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого
квадратного уравнения.

Решим квадратное уравнение ax2+bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+frac{b}{a}x +frac{c}{a}=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac{b}{2a}+left( frac{b}{2a}right)^2- left( frac{b}{2a}right)^2 + frac{c}{a} = 0 Rightarrow )

( x^2+2x cdot frac{b}{2a}+left( frac{b}{2a}right)^2 = left( frac{b}{2a}right)^2 — frac{c}{a} Rightarrow )

( left( x+frac{b}{2a}right)^2 = frac{b^2}{4a^2} — frac{c}{a} Rightarrow left( x+frac{b}{2a}right)^2 = frac{b^2-4ac}{4a^2} Rightarrow )

( x+frac{b}{2a} = pm sqrt{ frac{b^2-4ac}{4a^2} } Rightarrow x = -frac{b}{2a} + frac{ pm sqrt{b^2-4ac} }{2a} Rightarrow )

( x = frac{ -b pm sqrt{b^2-4ac} }{2a} )

Подкоренное выражение называют дискриминантом квадратного уравнения ax2+bx+c=0 («дискриминант» по латыни —
различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_{1,2} = frac{ -b pm sqrt{D} }{2a} ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac{b}{2a} ).
3) Если D<0, то квадратное уравнение не имеет корней, т.к. извлекать корень из отрицательного числа нельзя.

Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень
(при D = 0) или не иметь корней (при D < 0).

При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать,
что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10.
Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному
члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней
равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x2+px+q=0
обладают свойством:
( left{ begin{array}{l} x_1+x_2=-p \ x_1 cdot x_2=q end{array} right. )

Квадратное уравнение — это уравнение вида:

[a*x^{2}+b*x+c=0]

Решается это уравнение через вычисление дискриминанта и нахождение корней. В зависимости от знака дискриминанта, количество корней:

  • больше нуля — два корня
  • равен нулю — один корень
  • меньше нуля — нет корней

Решить квадратное уравнение через дискриминант с формулами позволяет наш калькулятор:

Числовые значения в таблице заполняются числом (5; 5.16; -3.12), либо математическим выражением (5/7; (1-5)*2.13)

Введите данные:

Округление:

* — обязательно заполнить

Уравнение:

(a * x^{2} + b * x + c) = (-8 * x^{2} + 4 * x ) = 0

Дискриминант:

(D = b^{2} — 4 * a * c) = (4^{2} — 4 *(-8) * 0) = (16 ) = 16

Корни квадратного уравнения:

(x_{1} = frac{-b + sqrt{D}}{2*a}) = (frac{-4 + sqrt{16}}{2*(-8)}) = (frac{-4 + 4}{-16}) = 0

(x_{2} = frac{-b — sqrt{D}}{2*a}) = (frac{-4 — sqrt{16}}{2*(-8)}) = (frac{-4 — 4}{-16}) = 0.5 (1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
(frac{a}{a}x^{2}+frac{b}{a}*x+frac{c}{a}) = (x^{2}+frac{4}{-8}*x+frac{0}{-8}) = (x^{2} -0.5 * x )

Итого, имеем приведенное уравнение:
(x^{2} -0.5 * x = 0)

Теорема Виета выглядит следующим образом:
(x_{1}*x_{2}=c)
(x_{1}+x_{2}=-b)

Мы получаем следующую систему уравнений:
(x_{1}*x_{2}=0)
(x_{1}+x_{2}=0.5)

Методом подбора получаем:
(x_{1} = 0)
(x_{2} = 0.5 (1/2))

Разложение на множители

Разложение происходит по формуле:
(a*(x-x_{1})*(x-x_{2}) = 0)

То есть у нас получается:
(-8*(x)*(x-0.5) = 0)

Неполное квадратное уравнение — это квадратное уравнение, где c=0. Формула неполного квадратного уравнения:

[a*x^{2}+b*x=0]

Его наш калькулятор также с успехом решает.

2.5
6
голоса

Рейтинг статьи

  • Альфашкола
  • Статьи
  • Теорема Виета

Теорема Виета

Решение квадратного уравнения a·x² + b·x + c = 0. 

Решение: Введите коэффициенты в калькулятор уравнений по теореме Виета и нажмите «посчитать»

Давайте вспомним, что такое квадратное уравнение. Квадратное уравнение имеет вид:

Квадратное уравнение

Если a равно (1), то  квадратное уравнение называется приведенным, то есть имеет вид:

Приведенное квадратным уравнением

Давайте сегодня научимся  решать квадратное уравнение с помощью теоремы Виета.  Это возможно, если квадратное уравнение является приведенным и имеет действительные корни (x1) и (x2).  Для этого надо подобрать в уме числа, удовлетворяющие условию:

Теорема Виета

Задача 1. Решить квадратное уравнение: (x^2-9x+14=0)

Решение:

Решение по теорема Виета

Ответ: (7) и (2).

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!


Запишитесь на бесплатное тестирование знаний!

Репетитор по математике

Томский государственный педагогический университет

Репетитор по математике

Актюбинский педагогический техникум

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *