Абсцесс алгебра это х или у

Абсцисса (математика)

Абсцисса (математика)

Рис. 1

Абсциссой (лат. abscissa — отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

В прямоугольной системе координат ось X’X называется «осью абсцисс».

При построении графиков функций, ось абсцисс обычно используется как область определения функции.

Правописание

Обратите внимание на написание: Абсцисса, но не абцисса и не абсциса.

См. также

  • Ордината
  • Аппликата

Wikimedia Foundation.
2010.

Смотреть что такое «Абсцисса (математика)» в других словарях:

  • АБСЦИССА — (от лат. abscindere отрезывать, отделять, отрывать). 1) пространство между ординатой и точкой, положение которой определяют на плоскости. 2) отрезок. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АБСЦИССА одна из …   Словарь иностранных слов русского языка

  • Лейбниц, Готфрид Вильгельм — Готфрид Вильгельм Лейбниц Gottfried Wilhelm Leibniz …   Википедия

  • НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим …   Философская энциклопедия

  • Аналитическая геометрия — Декартова система координат Аналитическая геометрия  раздел геометрии, в котором …   Википедия

  • Аполлоний Пергский — У этого термина существуют и другие значения, см. Аполлоний. Аполлоний Пергский Дата рождения: 262 год до н. э.( 262) Место рождения: Перге, Памфилия Дата смерти …   Википедия

  • Декарт Рене — Декарт основатель современной философии     Альфред Н. Уайтхед писал, что история современной философии это история развития картезианства в двух аспектах: идеалистическом и механистическом , res cogitans ( мышления ) и res extensa (… …   Западная философия от истоков до наших дней

  • Производная функции — У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной Производная&# …   Википедия

  • Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula  уменьшительное от forma  образ, вид)  принятая в математике (а также… …   Википедия

  • Полярная система координат — Полярная сетка, на которой отложено несколько углов с пометками в градусах. Полярная система координат  двумерная система координат, в которой каждая точка на плоскости определяется двумя числами  полярным углом и полярны …   Википедия

  • Лейбниц Готфрид Вильгельм — (Leibniz) (1646 1716), немецкий философ, математик, физик, языковед. С 1676 на службе у ганноверских герцогов. Основатель и президент (с 1700) Бранденбургского научного общества (позднее  Берлинская АН). По просьбе Петра I разработал проекты… …   Энциклопедический словарь

From Wikipedia, the free encyclopedia

Illustration of a Cartesian coordinate plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (–3, 1), and (–1.5, –2.5). The first value in each of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.

In common usage, the abscissa refers to the (x) coordinate and the ordinate refers to the (y) coordinate of a standard two-dimensional graph.

The distance of a point from the y-axis, scaled with the x-axis, is called the abscissa or x coordinate of the point. The distance of a point from the x-axis scaled with the y-axis is called the ordinate or y coordinate of the point.

For example, if (x, y) is an ordered pair in the Cartesian plane, then the first coordinate in the plane (x) is called the abscissa and the second coordinate (y) is the ordinate.

In mathematics, the abscissa (; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system:

abscissa {displaystyle equiv x}-axis (horizontal) coordinate
ordinate {displaystyle equiv y}-axis (vertical) coordinate

Usually these are the horizontal and vertical coordinates of a point in plane, the rectangular coordinate system. An ordered pair consists of two terms—the abscissa (horizontal, usually x) and the ordinate (vertical, usually y)—which define the location of a point in two-dimensional rectangular space:

{displaystyle (overbrace {x} ^{displaystyle {text{abscissa}}},overbrace {y} ^{displaystyle {text{ordinate}}})}

The abscissa of a point is the signed measure of its projection on the primary axis, whose absolute value is the distance between the projection and the origin of the axis, and whose sign is given by the location on the projection relative to the origin (before: negative; after: positive).

The ordinate of a point is the signed measure of its projection on the secondary axis, whose absolute value is the distance between the projection and the origin of the axis, and whose sign is given by the location on the projection relative to the origin (before: negative; after: positive).

Etymology[edit]

Though the word «abscissa» (from Latin linea abscissa ‘a line cut off’) has been used at least since De Practica Geometrie published in 1220 by Fibonacci (Leonardo of Pisa), its use in its modern sense may be due to Venetian mathematician Stefano degli Angeli in his work Miscellaneum Hyperbolicum, et Parabolicum of 1659.[1]

In his 1892 work Vorlesungen über die Geschichte der MathematikLectures on history of mathematics«), volume 2, German historian of mathematics Moritz Cantor writes:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht kommt das Wort in Uebersetzungen der Apollonischen Kegelschnitte vor, wo Buch I Satz 20 von ἀποτεμνομέναις die Rede ist, wofür es kaum ein entsprechenderes lateinisches Wort als abscissa geben möchte.[2]

At the same time it was presumably by [Stefano degli Angeli] that a word was introduced into the mathematical vocabulary for which especially in analytic geometry the future proved to have much in store. […] We know of no earlier use of the word abscissa in Latin original texts. Maybe the word appears in translations of the Apollonian conics, where [in] Book I, Chapter 20 there is mention of ἀποτεμνομέναις, for which there would hardly be a more appropriate Latin word than abscissa.

The use of the word “ordinate” is related to the Latin phrase “linea ordinata appliicata”, or “line applied parallel”.

In parametric equations[edit]

In a somewhat obsolete variant usage, the abscissa of a point may also refer to any number that describes the point’s location along some path, e.g. the parameter of a parametric equation.[3] Used in this way, the abscissa can be thought of as a coordinate-geometry analog to the independent variable in a mathematical model or experiment (with any ordinates filling a role analogous to dependent variables).

See also[edit]

  • Dependent and independent variables
  • Function (mathematics)
  • Relation (mathematics)
  • Line chart

References[edit]

  1. ^ Dyer, Jason (March 8, 2009). «On the Word «Abscissa»«. numberwarrior.wordpress.com. The number Warrior. Retrieved September 10, 2015.
  2. ^ Cantor, Moritz (1900). Vorlesungen über Geschichte der Mathematik (in German). Vol. 2 (2nd ed.). Leipzig: B.G. Teubner. p. 898. Retrieved 10 September 2015.
  3. ^ Hedegaard, Rasmus; Weisstein, Eric W. «Abscissa». MathWorld. Retrieved 14 July 2013.

External links[edit]

  • The dictionary definition of abscissa and ordinate at Wiktionary

250px Cartesian coordinate system.svg

Обычно абсцисса относится к горизонтальной оси ( x ), а ордината относится к вертикальной оси ( y ) стандартного двухмерного графика.

Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

Содержание

  1. СОДЕРЖАНИЕ
  2. Этимология
  3. В параметрических уравнениях
  4. СОДЕРЖАНИЕ
  5. Этимология
  6. В параметрических уравнениях
  7. Абсцисса (математика)
  8. Правописание
  9. См. также
  10. Смотреть что такое «Абсцисса (математика)» в других словарях:
  11. Абсцисса и ордината
  12. Ось ординат
  13. Декартова система координат
  14. Оси координат
  15. Что мы узнали?

СОДЕРЖАНИЕ

Этимология

В своей работе 1892 года « Vorlesungen über die Geschichte der Mathematik»Лекции по истории математики »), том 2, немецкий историк математики Мориц Кантор пишет:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den Mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht Kommt Дас Сусло в Uebersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte.

Использование слова «ордината» связано с латинским выражением «linea ordinata Applicata» или «параллельная линия».

В параметрических уравнениях

Источник

250px Cartesian coordinate system.svg

Обычно абсцисса относится к горизонтальной оси ( x ), а ордината относится к вертикальной оси ( y ) стандартного двухмерного графика.

Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

СОДЕРЖАНИЕ

Этимология

В своей работе 1892 года « Vorlesungen über die Geschichte der Mathematik»Лекции по истории математики »), том 2, немецкий историк математики Мориц Кантор пишет:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den Mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht Kommt Дас Сусло в Uebersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte.

Использование слова «ордината» связано с латинским выражением «linea ordinata Applicata» или «параллельная линия».

В параметрических уравнениях

Источник

Абсцисса (математика)

250px descartes system 2d

Абсциссой (лат. abscissa — отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

В прямоугольной системе координат ось X’X называется «осью абсцисс».

При построении графиков функций, ось абсцисс обычно используется как область определения функции.

Правописание

Обратите внимание на написание: Абсцисса, но не абцисса и не абсциса.

См. также

Смотреть что такое «Абсцисса (математика)» в других словарях:

АБСЦИССА — (от лат. abscindere отрезывать, отделять, отрывать). 1) пространство между ординатой и точкой, положение которой определяют на плоскости. 2) отрезок. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АБСЦИССА одна из … Словарь иностранных слов русского языка

Лейбниц, Готфрид Вильгельм — Готфрид Вильгельм Лейбниц Gottfried Wilhelm Leibniz … Википедия

НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим … Философская энциклопедия

Аналитическая геометрия — Декартова система координат Аналитическая геометрия раздел геометрии, в котором … Википедия

Аполлоний Пергский — У этого термина существуют и другие значения, см. Аполлоний. Аполлоний Пергский Дата рождения: 262 год до н. э.( 262) Место рождения: Перге, Памфилия Дата смерти … Википедия

Производная функции — У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной Производная&# … Википедия

Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula уменьшительное от forma образ, вид) принятая в математике (а также… … Википедия

Полярная система координат — Полярная сетка, на которой отложено несколько углов с пометками в градусах. Полярная система координат двумерная система координат, в которой каждая точка на плоскости определяется двумя числами полярным углом и полярны … Википедия

Лейбниц Готфрид Вильгельм — (Leibniz) (1646 1716), немецкий философ, математик, физик, языковед. С 1676 на службе у ганноверских герцогов. Основатель и президент (с 1700) Бранденбургского научного общества (позднее Берлинская АН). По просьбе Петра I разработал проекты… … Энциклопедический словарь

Источник

Абсцисса и ордината

Обычно абсцисса относится к горизонтальной оси ( x ), а ордината относится к вертикальной оси ( y ) стандартного двухмерного графика.

250px Cartesian coordinate system.svg

Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

В своей работе 1892 года « Vorlesungen über die Geschichte der Mathematik»Лекции по истории математики »), том 2, немецкий историк математики Мориц Кантор пишет:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den Mathematischen Sprachschatz eingeführt wordden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht Kommt Дас Сусло в Uebersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte. [2]

Использование слова «ордината» связано с латинским выражением «linea ordinata Applicata» или «параллельная линия».

Источник

Ось ординат

os ordinat os ordinat

Всего получено оценок: 128.

Всего получено оценок: 128.

Оси абсцисс и ось ординат – это вечная проблема, как учеников, так и студентов. Названия осей по переменным х и у запоминаются куда легче, поэтому все привыкли использовать их. Почему нужно знать изначальные названия и откуда взялось понятие ординаты расскажем ниже.

Декартова система координат

Рене Декарт прославился многими открытиями в науке, несмотря на всяческие гонения со стороны бушевавшей инквизиции. Но в умах многих и многих поколений потомков он остался как изобретатель декартовой или прямоугольной системы координат.

Прямоугольная система координат сегодня используется везде: в радарах, для настройки светового оборудования, в оптике – практически любая отрасль не может обойтись без использования столь удобной системы.

Система Декарта состоит из двух взаимно перпендикулярных прямых. В любой системе координат обязательно должны быть:

Единичные отрезки на разных осях могут быть различны. Размер отрезка выбирают в соответствии с отметками, которые нужно нанести.

Оси координат

Оси координат это основа системы. Чтобы узнать координаты какой-либо точки, нужно опустить перпендикуляры на каждую из осей. Отрезки, заключенные между точкой отчета и точкой пересечения оси с перпендикуляром зовутся проекциями точки на оси. Размер этих проекций, выраженный в единичных отрезках, и есть координаты точки.

Традиционно оси называют переменными х и у. Это связано с традиционной записью функций, которые часто в виде графиков переносятся на ось координат. Например, функция у=х+3 – прямая линия. При этом сразу понятно, что если подставить любое число вместо х, то можно получить соответствующее значение у. Так высчитывают координаты точки в составе графика.

По факту оси можно называть как угодно. Это зависит только от ученика, решающего задачу. А названия абсцисс и ординат сохраняется всегда.

Осью абсцисс зовется ось х. Она отвечает за отслеживание горизонтальных перемещений точки. В переводе с латинского языка «абсцисса» переводится как «отрезок».

Если говорить кратко о оси ординат, то так зовется ось у. Эта ось отвечает за перемещения по вертикали. Если точка поднимается или опускается, это можно отследить по изменению ординаты. Ордината переводится как порядок.

Осью абсцисс зовется ось х. Она отвечает за отслеживание горизонтальных перемещений точки. В переводе с латинского языка «абсцисса» переводится как «отрезок».

Если воспользоваться переводом, то можно сказать так: чтобы отметить точку в системе координат, нужно отложить отрезок по горизонтали, равный абсциссе и поднять точку на несколько порядков вверх по ординате. Так проще запомнить правильные названия осей.

lazyimg

Что мы узнали?

Мы поговорили о Декартовой системе координат. Узнали, зачем нужно использовать правильные названия осей. Поговорили о том, что такое абсцисса и ордината. Выяснили, почему чаще всего оси обозначаются х и у. Сказали о том, что традиционное обозначение может быть заменено в любой момент.

Источник

Значение слова «абсцисса»

  • АБСЦИ́ССА, -ы, ж. Мат. Одна из трех координат, определяющих положение точки в пространстве.

    [От лат. abscissa — отсеченная, отрезанная]

Источник (печатная версия): Словарь русского языка: В 4-х
т. / РАН,
Ин-т лингвистич.
исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.;
Полиграфресурсы,
1999;
(электронная версия): Фундаментальная
электронная
библиотека

  • Абсциссой точки A называется координата этой точки на оси X’Х в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рисунок). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

    В прямоугольной системе координат луч (прямая) X’X называется «осью абсцисс». При построении графиков функций, ось абсцисс обычно используется как область определения функции.

Источник: Википедия

  • АБСЦИ’ССА, ы, ж. [латин. abscissa, букв. отрезанная] (мат.). Горизонтальный отрезок линии от точки пересечения координатных осей до ординаты искомой точки. На диаграмме роста сети железных дорог года нанесены на оси абсцисс.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940);
(электронная версия): Фундаментальная
электронная
библиотека

  • абсци́сса

    1. матем. координата точки на оси X в прямоугольной системе координат Перемещение точки по абсциссе вызывает сдвиг проекции по ординате.

Источник: Викисловарь

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
Карту слов. Я отлично
умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: капо — это что-то нейтральное, положительное или отрицательное?

Ассоциации к слову «абсцисса»

Синонимы к слову «абсцисса»

Предложения со словом «абсцисса»

  • Поэтому для обобщения результатов строится диаграмма, у которой по оси абсцисс откладываются значения фн.о. вп, а по оси ординат – значения фн.о. вып.
  • По оси абсцисс отложено время в годах, где исходная точка кривой соответствует моменту пассионарного толчка, послужившего причиной появления этноса.
  • Абсцисса может быть определена на проекциях бок и полуширота, ордината – на проекциях полуширота и корпус, аппликата – на проекциях бок и корпус.
  • (все предложения)

Понятия, связанные со словом «абсцисса»

  • Точка перегиба — точка плоской кривой, в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).

  • Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.

  • Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

  • В математике индекс точки или порядок точки относительно замкнутой кривой на плоскости — это целое число, представляющее число полных оборотов, которое делает кривая вокруг заданной точки против часовой стрелки. Иногда говорят о порядке кривой относительно точки. Индекс зависит от ориентации кривой и принимает отрицательное значение, если обход кривой происходит по часовой стрелке.

  • Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой в евклидовой геометрии. Расстояние равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой. Формула вычисления расстояния может быть получена и выражена несколькими способами.

  • (все понятия)

Отправить комментарий

Дополнительно

Смотрите также

  • Поэтому для обобщения результатов строится диаграмма, у которой по оси абсцисс откладываются значения фн.о. вп, а по оси ординат – значения фн.о. вып.

  • По оси абсцисс отложено время в годах, где исходная точка кривой соответствует моменту пассионарного толчка, послужившего причиной появления этноса.

  • Абсцисса может быть определена на проекциях бок и полуширота, ордината – на проекциях полуширота и корпус, аппликата – на проекциях бок и корпус.

  • (все предложения)
  • ордината
  • координата
  • склонение
  • икосаэдр
  • перигелий
  • (ещё синонимы…)
  • график
  • (ещё ассоциации…)
  • ось абсцисс
  • (полная таблица сочетаемости…)
  • Склонение
    существительного «абсцисса»
  • Разбор по составу слова «абсцисса»
  • Как правильно пишется слово «абсцисса»

Ось абсцисс


Ось абсцисс

4.6

Средняя оценка: 4.6

Всего получено оценок: 114.

4.6

Средняя оценка: 4.6

Всего получено оценок: 114.

Оси абсцисс и ординат часто путают между собой. Это касается не только учеников, но и студентов и преподавателей нематематических дисциплин. Это знание ни на что особенно не влияет, но во многих теоремах пишут именно названия.

Системы координат

Название оси абсцисс относится к системам координат. На самом деле в мире используется две системы, хотя привычной для нас является декартова система координат.

Плоская декартова система координат состоит из двух взаимно перпендикулярных отрезков. Точка пересечения отрезков считается началом отчета. На каждом из отрезков обозначается единичный отрезок и направление движения.

Каждый из перпендикулярных отрезков называется осью. Единичный отрезок у каждой из осей может быть разным. Направления задаются, как правило, традиционно: вверх и вправо. Но иногда составители задач пытаются подловить учеников на этом и делают другие направления в системе. Поэтому, нужно быть крайне внимательным при работе с чужой системой координат.

Еще одной системой координат называется полярной. Если в декартовой системе для того, чтобы определить местоположение точки нужно знать две ее координаты, то в полярной системе нужно знать координату и угол подъема. Этой системой пользовались в древность, сегодня от нее почти отказались из-за излишней сложности.

Декартова система координат

Принцип работы с декартовой системой основан на понимании понятия проекции. Проекция в системе это перпендикуляр, опущенный на оси. Оси обозначаются как х и у. Ось х направлена вправо. Ось у направлена влево.

Представим себе точку на плоскости. Если нам нужно узнать ее координаты, то необходимо опустить два перпендикуляра: по одному на оси.

Так мы получим проекцию точки на ось х, это отрезок от начала отчета до точки пересечения оси с перпендикуляром. И проекцию отрезка на ось у: это расстояние на оси у от начала координат до точки пересечения оси с перпендикуляром.

Значение каждой из проекции и будет являться координатами точки на плоскости. По этим же координатам можно получить точку заново. Для этого нужно отложить требуемые значения на осях, после чего провести через отложенные точки прямые, перпендикулярные осям. Точка пересечения перпендикуляров и будет искомой прямой.

Оси декартовой системы

Вот мы и подошли к главному вопросу. Ось х имеет название оси абсцисс. Название это происходит от латинского «отрезок». Ось названа так потому, что отслеживает движение точки по горизонтали.

Вторая ось называется осью ординат, от латинского «порядок, движение по порядку». Имеется в виду, что эта координата отслеживает порядок движения вверх. Такая уж была логика у математиков древности.

Секрет в том, что названия осей можно менять как угодно, но оси все равно будут зваться осью абсцисс и осью ординат. Вне зависимости от буквенного обозначения осей, единичных отрезков и начала отсчета.

Заключение

Что мы узнали?

Мы поговорили о системах координат. Выделили полярную и декартову систему. Отдельно обсудили декартову систему. Поговорили об обязательных характеристиках системы координат: единичный отрезок, направление осей, начало отсчета. Выяснили, что такое ось абсцисс. Поговорили о том, почему именно такое название получила каждая из осей.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 114.


А какая ваша оценка?

Прямоугольная система координат. Ось абсцисс и ординат

О чем эта статья:

Прямоугольная декартова система координат

Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Где абсцисса а где ордината на графике

Знание — сила. Познавательная информация

Ось абсцисс, ось ординат

Эта ассоциация позволяет легко запомнить, что x — это ось абсцисс, а y — ось ординат и никогда больше не путать оси координат.

Ассоциация очень простая. Итак, есть ось абсцисс и ось ординат — ось x и ось y. Абсцисса начинается на букву «а», ордината — на букву «о». Что у нас в русском алфавите? Сначала идет буква «а», затем — буква «о». В латинском алфавите сначала идет «x», затем — «y». Соответственно, абсцисса — это x, ордината — это y.

Русский алфавит: а, о

Латинский алфавит: x, y

Соответствие: а-x, о-y ( А бсцисса — X , O рдината — Y ).

Для тех, кто путает, где на координатной плоскости ось x, а где — ось y, есть следующая ассоциация .

В прямоугольной системе координат ось X’X называется «осью абсцисс» .

При построении графиков функций, ось абсцисс обычно используется как область определения функции.

Ординатой (от лат. ordinatus – расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см. рис. 1). Если точка C принадлежит положительной полуоси OY, то ордината имеет положительное значение. Если точка C принадлежит отрицательной полуоси Y’O, то ордината имеет отрицательное значение. Если точка A лежит на оси X’X, то её ордината равна нулю.

В прямоугольной системе координат ось Y’Y называется «осью ординат» .

При построении графиков функций, ось ординат обычно используется как область значений функции.

В прямоугольной системе координат ось X’X называется «осью абсцисс» .

При построении графиков функций, ось абсцисс обычно используется как область определения функции.

Ординатой (от лат. ordinatus – расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см. рис. 1). Если точка C принадлежит положительной полуоси OY, то ордината имеет положительное значение. Если точка C принадлежит отрицательной полуоси Y’O, то ордината имеет отрицательное значение. Если точка A лежит на оси X’X, то её ордината равна нулю.

В прямоугольной системе координат ось Y’Y называется «осью ординат» .

При построении графиков функций, ось ординат обычно используется как область значений функции.

В математике , то по оси абсциссы ( / æ б ы ɪ с . Ə / ; множественная абсцисса или абсцисса или абсцисса ) и ординаты соответственно первые и вторые координаты из точки в системе координат .

Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный, после того, как : положительная).

Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный, после того, как : положительная).

Обычно это горизонтальные и вертикальные координаты точки в двумерной прямоугольной декартовой системе координат . Термины также могут относиться к горизонтальным и вертикальным осям , соответственно (обычно х -Axis и у -Axis) из двумерный графика. Упорядоченная пара состоит из двух слагаемых-оси абсцисс (горизонтальная, как правило , х ) и оси ординат (вертикальной, как правило , у ) -Какой определяют положение точки в двумерном пространстве прямоугольной.

( Икс ⏞ абсцисса , Y ⏞ ордината ) ^ >, overbrace ^ >)>

содержание

Этимология

Хотя слово «абсцисса» (лат; «Linea абсцисса», «линия отрезана») используется , по крайней мере , так как De Practica Geometrie , опубликованной в 1220 году Фибоначчи (Леонардо из Пизы), его использование в его современном понимании может быть связано венецианский математик Стефано дельи Анджели в своей работе Miscellaneum Hyperbolicum, и др Parabolicum 1659.

В 1892 работы Лекциях по теории über Geschichte дер Mathematik, Том 2, ( « Лекции по истории математики ») немецкий историк математики Мориц Кантор пишет

«Wir Кеннен Keine ältere Benutzung де Wortes Abssisse в lateinischen Originalschriften [чем дельи Анджели – х]. Vielleicht Kommt дас Сусло в Übersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte «. «Мы не знаем , не ранее использования слова абсциссы латинских оригиналов [чем дельи Анджели – х]. Может быть , это слово происходит от переводов Аполлона коника , где в книге I, Глава 20 там появляется ἀποτεμνομέναις, для которых вряд ли было бы в случае необходимости латинское слово , как по оси абсцисс.

В параметрических уравнениях

В нескольких устаревшей использовании варианты, абсцисса точки может также относиться к любому числу , которое описывает положение точки вдоль некоторого пути, например параметр в параметрическом уравнении . Используемый в этом случае, по оси абсцисс можно рассматривать как координатно-геометрию аналога к независимой переменной в математической модели или эксперимента (с любыми ординат , заполняющих роль , аналогичную зависимых переменных ).

Смотрите также

Рекомендации

Эта статья основана на материале , взятом из Бесплатный он-лайн словарь вычислительной до 1 ноября 2008 года и зарегистрированная в соответствии с «релицензировании» с точки зрения GFDL , версии 1.3 или более поздней версии.

Синус это х или у в окружности

Математика – это очень просто, даже проще, чем мы можем себе представить. Сложной математику делают сами математики.

Страницы

среда, 7 ноября 2012 г.

Тригонометрический круг синус и косинус

Тригонометрический круг представляет значения тригонометрических функций синус (sin) и косинус (cos) в виде координат точек единичной окружности при различных значениях угла альфа в градусах и радианах.

Поскольку я сам вечно путаюсь при переводе координат точек окружности в синусы и косинусы, для простоты все значения косинусов (cos) для углов от 0 до 360 градусов (от 0 пи до 2 пи) подчеркнуты зеленой черточкой. Даже при распечатке этого рисунка тригонометрического круга на черно-белом принтере все значения косинуса будут подчеркнуты, а значения синуса будут без подчеркивания. Если вам интересно, то можете посмотреть отдельные тригонометрические круги для синуса и косинуса.

Напротив указанных углов на окружности расположены точки, а в круглых скобках указаны координаты этих точек. Первой записана координата Х (косинус)

Давайте проведем обзорную экскурсию по этому уголку математического зоопарка. Прежде всего, нужно отметить, что здесь присутствует декартова система координат – одна черная горизонтальная линия с буковкой Х возле стрелочки, вторая – вертикальная линия с буковкой У. На оси Х, которую еще называют ось абсцисс (это умное слово математики придумали специально, что бы запутать блондинок) живут косинусы – cos. На оси У, которую называют ось ординат (еще одно умное слово, которое в устах блондинки может стать убийственным оружием), живут синусы – sin. Если посмотреть на семейную жизнь этих тригонометрических функций, то не трудно заметить, что синусы всегда на кухне у плиты по вертикали, а косинусы – на диване перед телевизором по горизонтали.

В этой системе координат нарисована окружность радиусом, равным единице. Центр окружности находится в начале системы координат – там, где в центе рисунка пересекаются оси абсцисс (ось Х) и ординат (ось У).

Из центра окружности проведены тоненькие черточки, которые показывают углы 30, 45, 60, 120, 135, 150, 210, 225, 240, 300, 315, 330 градусов. В радианной мере углов это пи деленное на 6, пи на 4, пи на 3, 2 пи на 3, 3 пи на 4, 5 пи на 6, 7 пи на 6, 5 пи на 4, 4 пи на 3, 3 пи на 2, 5 пи на 3, 7 пи на 4, 11 пи деленное на 6. С осями координат совпадают такие значения углов: 0, 90, 180, 270 градусов или 0 пи, пи деленное на 2, пи, 3 пи деленное на 2. Пользуясь картинкой, очень просто переводить углы из градусов в радианы и из радиан в градусы. Одинаковые значения в разных системах измерения углов написаны на одной линии, изображающей этот угол.

Линии углов заканчиваются точками на единичной окружности. Возле каждой точки, в круглых скобках, записаны координаты этой точки. Первой записана координата Х, которая соответствует косинусу угла, образовавшего эту точку. Второй записана координата У этой точки, что соответствует значению синуса угла. По картинке довольно легко находить синус и косинус заданного угла и наоборот, по заданному значению синуса или косинуса, можно легко найти значение угла. Главное, не перепутать синус с косинусом.

Обращаю особое внимание на тот факт, что если вы по значению синуса или косинуса ищите угол, обязательно нужно дописывать период угла. Математики очень трепетно относятся к этому аппендициту тригонометрических функций и при его отсутствии могут влепить двойку за, казалось бы, правильный ответ. Что такое период при нахождении угла по значению тригонометрической функции? Это такая штучка, которая придумана математиками специально для того, чтобы запутываться самим и запутывать других. Особенно блондинок. Но об этом мы поговорим как-нибудь в другой раз.

Всё, что собрано в кучку на рисунке тригонометрического круга синуса и косинуса, можно внимательно рассмотреть на отдельных картинках с портретами синуса 0, 30, 45 градусов (ссылки на отдельные странички я буду добавлять по мере увеличения фотогалереи синусов и косинусов).

Синусы и косинусы круг – здесь картинка во всей своей тригонометрической красе.

Угол 120 градусов в радианах – равен 2/3 пи или 2 пи деленное на 3, на картинке очень красиво нарисовано.

Значения синусов косинусов углов в радианах – на картинке есть такие, надеюсь, именно те углы, которые вы ищете.

Значение косинуса угла в 45 градусов – равно корню из двух деленному на два, можете проверить по рисунку.

Тригонометрическая окружность – я не совсем уверен, что представленная на картинке окружность является тригонометрической, но что-то от тригонометрии в этой окружности определенно есть, например, синусы и косинусы на окружности – вылитая тригонометрия.

Тригонометрический круг рисунок – есть здесь такой. Правда, не самый красивый рисунок, можно нарисовать гораздо красивее и понятнее. Мне минус в репутацию – почему я до сих пор не нарисовал его для блондинок? Представляете ситуацию в картинной галерее будущего: экскурсовод объясняет группе школьников “Перед вами всемирно известное полотно “Тригонометрическая мадонна с единичным отрезком на руках” – картина гениального художника эпохи Раннего Математического Возрождения . ” Дальше она называет имя этого самого художника (или художницы). Это имя может быть вашим!

Круг синусов и косинусов – именно такой круг совершенно случайно оказался здесь на картинке.

Угол 9 градусов сколько это в пи – в пи это 1/20 или пи/20.
Решение: для перевода градусов в пи радиан, нужно имеющиеся у нас градусы разделить на 180 градусов (это 1 пи радиан). У нас получается 9/180 = 1/20

Ответ: 9 градусов = 1/20 пи.

Синус это вверх или в сторону – синус – это вверх, в сторону – это косинус.

Комментарии к этой статье запрещены. Из-за огромного их количества мои ответы на ваши вопросы о тригонометрическом круге уже не публикуются. Вопросы можете задавать в комментариях к другим страницам. Постараюсь решить проблему за счет удаления части комментариев, тем самым освобожу место для новых.

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла ( sin α ) – отношение противолежащего этому углу катета к гипотенузе.

Косинус угла ( cos α ) – отношение прилежащего катета к гипотенузе.

Тангенс угла ( t g α ) – отношение противолежащего катета к прилежащему.

Котангенс угла ( c t g α ) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от – ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).

Синус (sin) угла поворота

Синус угла поворота α – это ордината точки A 1 ( x , y ). sin α = y

Косинус угла поворота α – это абсцисса точки A 1 ( x , y ). cos α = х

Тангенс угла поворота α – это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x

Котангенс угла поворота α – это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , – 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )

При решении практических примеров не говорят “синус угла поворота α “. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами ( 1 , 0 ).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).

Можно сказать, что sin α , cos α , t g α , c t g α – это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Геометрическое определение синуса и косинуса

α – угол, выраженный в радианах.

Свойства синуса и косинуса

Принятые обозначения

( sin^2 x equiv (sin x)^2; ) ( quad sin^3 x equiv (sin x)^3; ) ( quad sin^n x equiv (sin x)^n ) ( sin^ x equiv arcsin x ) ( (sin x )^ equiv dfrac1 equiv cosec x ) .

( cos^2 x equiv (cos x)^2; ) ( quad cos^3 x equiv (cos x)^3; ) ( quad cos^n x equiv (cos x)^n ) ( cos^ x equiv arccos x ) ( (cos x )^ equiv dfrac1 equiv sec x ) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

( sin(x + 2pi) = sin x; quad ) ( cos(x + 2pi) = cos x )

Четность

Функция синус – нечетная. Функция косинус – четная.

( sin( -x ) = – sin x; quad ) ( cos( -x ) = cos x )

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n – целое).

( small -dfrac

2 + 2pi n ) ( small ( small dfrac

2 + 2pi n )

( small -pi + 2pi n ) ( small ( small 2pi n )
Убывание ( small dfrac

2 + 2pi n ) ( small ( small dfrac 2 + 2pi n )

( small 2pi n ) ( small ( pi + small 2pi n )
Максимумы, ( small x = ) ( small dfrac

2 + 2pi n )

( small x = 2pi n )
Минимумы, ( small x = ) ( small -dfrac

2 + 2pi n )

( small x = ) ( small pi + 2pi n )
Нули, ( small x = pi n ) ( small x = dfrac

2 + pi n )

Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

( sin^2 x + cos^2 x = 1 )

Формулы синуса и косинуса суммы и разности

( sin(x + y) = sin x cos y + cos x sin y )
( sin(x – y) = sin x cos y – cos x sin y )
( cos(x + y) = cos x cos y – sin x sin y )
( cos(x – y) = cos x cos y + sin x sin y )

( sin( 2x ) = 2 sin x cos x )
( cos( 2x ) = cos^2 x – sin^2 x = ) ( 2 cos^2 x – 1 = 1 – 2 sin^2 x )
( cosleft( dfrac

2 – x
ight) = sin x ) ; ( sinleft( dfrac

2 – x
ight) = cos x )
( cos( x + pi ) = – cos x ) ; ( sin( x + pi ) = – sin x )

Формулы произведения синусов и косинусов

( sin x cos y = ) ( dfrac12 sin( x – y ) + sin( x + y ) )
( sin x sin y = ) ( dfrac12 cos( x – y ) – cos( x + y ) )
( cos x cos y = ) ( dfrac12 cos( x – y ) + cos( x + y ) )

( sin x cos y = dfrac12 sin 2x )
( sin^2 x = dfrac12 1 – cos 2x )
( cos^2 x = dfrac12 1 + cos 2x )

Формулы суммы и разности

( sin x + sin y = 2 , sin dfrac2 , cos dfrac2 )
( sin x – sin y = 2 , sin dfrac2 , cos dfrac2 )
( cos x + cos y = 2 , cos dfrac2 , cos dfrac2 )
( cos x – cos y = 2 , sin dfrac2 , sin dfrac2 )

Выражение синуса через косинус

Далее мы полагаем, что ( n ) – целое число.

Выражение косинуса через синус

Выражение через тангенс

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style=”max-w ]

Выражения через комплексные переменные

Формула Эйлера

( e^ = cos z + i sin z )

Выражения через гиперболические функции

( sin iz = i sh z ) ( cos iz = ch z )
( sh iz = i sin z ) ( ch iz = cos z )

Производные

( ( sin x )’ = cos x ) ( ( cos x )’ = – sin x ) . Вывод формул > > >

Производные n-го порядка:
( left( sin x
ight)^ = sinleft( x + ndfrac

2
ight) ) ( left( cos x
ight)^ = cosleft( x + ndfrac

Интегралы

( int sin x , dx = – cos x + C ) ( int cos x , dx = sin x + C )
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

Секанс, косеканс

( sec x = dfrac1 ; ) ( cosec x = dfrac1 )

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

( y = arcsin x ) ( left )
( sin( arcsin x ) = x ) ( )
( arcsin( sin x ) = x ) ( left )

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла – это абсцисса точки. Синус угла – это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки ; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол . На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

источники:

http://4systems.ru/inf/gde-abscissa-a-gde-ordinata-na-grafike/

http://pcznatok.ru/kompjutery/sinus-jeto-h-ili-u-v-okruzhnosti.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *