Сразу хочу сказать, что здесь никакой воды про теорема, и только нужная информация. Для того чтобы лучше понимать что такое
теорема, аксиома, лемма, следствия, аксиоматизация теории , настоятельно рекомендую прочитать все из категории введение в математику. основы. Кликните на вариант (или варианты ответов), если он правильный — то будет подсвечен зеленым цветом
и вам будет зачислено пару монеток, а если неверный — то красным и будет снята монетка. Удачи в прохождении онлайн теста!
В математических дисциплинах широко используются четкие понятия такие как определения, теоремы, леммы, аксиомы, расссмотрим что это такое?
теорема (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем,
аксиома ми называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.
В математических текстах теоремами обычно называют только те доказанные утверждения, которые находят широкое применение в решении математических задач. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределенные утверждения). Менее важные утверждения-теоремы обычно называют
лемма ми,предложениями,
следствия ми, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называютгипотезами.
Наиболее знаменитыми являются теоремы Ферма, Пифагора и Птолемея.
Лемма (греч. λημμα — предположение) — доказанное утверждение, полезное не само по себе, а для доказательства других утверждений. Примеры известных лемм —лемма Евклида, лемма Жордана, лемма Гаусса, лемма Накаямы, лемма Гриндлингера, Лемма Лоренца, Лемма Лебедева.
Аксиома (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.
В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причем вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.
Аксиоматизация теории — явное указание конечного или счетного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода . Об этом говорит сайт https://intellect.icu . После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, все дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами.
Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.
Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчета» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории.
Австрийский математик Курт Гедель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определенного уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдется хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).
Примеры аксиом
- Аксиома выбора
- Аксиома параллельности Евклида
- Аксиома Архимеда
- Аксиома объемности
- Аксиома регулярности
- Аксиома полной индукции
- Аксиома Колмогорова
- Аксиома булеана
- Аксиоматика
- Аксиоматика теории множеств
- Аксиоматика вещественных чисел
- Аксиоматика Евклида
- Аксиоматика Гильберта
Следствие — утверждение, которое выводится непосредственно из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Приведем примеры следствий из аксиомы о параллельности прямых:
- если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
- если две прямые параллельны третьей прямой, то они параллельны.
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешел в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времен Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора ее аксиом.
Подведем итог и сделам сравнения и выявим сходства и различия
- Аксиома: фундаментальное логическое утверждение , что вы предположить , чтобы быть правдой, чтобы построить теорию. Ничто не вырастает из ничего: даже для построения логики или математики вам нужно исходить из некоторых предположений, которые вы просто принимаете как разумные.
- Определение: нельзя заниматься математикой, используя только логические символы: это слишком громоздко. Часто вводятся упрощения, обозначения, названия, чтобы говорить о часто возникающих вещах. Это соглашение о том, чтобы что-то называть определенным образом.
- Лемма: истинное утверждение, которое может быть доказано (исходя из других истинных утверждений или из аксиом) и которое немедленно (или почти сразу) используется для доказательства чего-то более важного (теоремы / предложения).
- Теорема: важное и / или трудное для доказательства математическое утверждение.
- Предложение: истинное математическое утверждение, которое не так важно / сложно, как теорема. Скажем, обычное истинное математическое утверждение.
- Следствие: истинное математическое утверждение, которое следует прямо как следствие теоремы или предложения (например, как частный случай).
- Закон: не очень часто используется в чистой математике, чаще, например, в физике, относится к истинному факту о природе.
Тесты для самопроверки
1. Правило, которое принимается без доказательств.
- * аксиома
- теорема
- доказательство
- условное определение
2. Утверждение доказано с помощью аксиом, постулатов или других теорем, которые заведомо верны это
- *понятие теоремы
- понятие угола
- понятие Трансверсаль — множества
- понятие Евклидовой геометрии
3.Математическое утверждение, требующее доказательства, — это
- * теорема
- аксиома
- определение
- предположение
- гипотеза
4.Математическое утверждение, которое НЕ требует доказательства, является
- теорема
- * аксиома
- догадка
- определение
- гипотеза
- догма
5.Если AB = 10, какое определение объясняет, почему AM = 5?
- Определение равенства
- * Определение средней точки
- Определение отрезка
6. доказанное утверждение испольуемое для доказательства других утверждений
- свойство
- теорема
- * лемма
- аксиома
- правило
- закон
См. также
- Догма
- Концепция
- Логика
- Гипотеза
- Формализм ( математика )
- Теоремы Геделя о неполноте
- Система отсчета
- Факт
- Теорема
- Теория множеств
- Теория категорий
Статью про теорема я написал специально для тебя. Если ты хотел бы внести свой вклад в развии теории и практики,
ты можешь написать коммент или статью отправив на мою почту в разделе контакты.
Этим ты поможешь другим читателям, ведь ты хочешь это сделать? Надеюсь, что теперь ты понял что такое теорема, аксиома, лемма, следствия, аксиоматизация теории
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
введение в математику. основы
Содержание
- Что такое аксиома и теорема
- Что такое аксиома
- Что такое теорема
- Что такое лемма
- Что такое следствие в геометрии
- Аксиома и лемма в чем разница
- Что такое аксиома, теорема и доказательство теоремы
- Понятие аксиомы
- Понятие теоремы
- Доказательство через синтез
- Доказательство через анализ
- Теоремы без доказательств
- Понятия свойств и признаков
- Понятие Теорема и Аксиома Лемма, Следствия с тестами кратко
- История
- Тесты для самопроверки
- См. также
- Теория множеств
Что такое аксиома и теорема
Решение всех задач в геометрии построено на логических рассуждениях. С их помощью мы решаем задачи или выводим новые доказательства.
Некоторые из утверждений в геометрии мы используем не задумываясь. Вспомним высказывание, которое мы слышим при самом первом знакомстве с геометрией:
«Через две точки можно провести прямую, и притом только одну».
Но можно ли считать подобное рассуждение доказательством?
Другими словами, утверждение «Через две точки можно провести прямую, и притом только одну» не является доказанным только потому, что мы нарисовали рисунок и по рисунку «на глаз» стало все понятно.
В геометрии действует принцип: «Не верь глазам своим, пока не докажешь утверждение с помощью рассуждений».
Но что нам в таком случае делать? Ведь при решении задач мы используем какие-то очевидные утверждения, не задумываясь об их истинности.
Что такое аксиома
Слово аксиома произошло от древнегреческого слова «axioma» — утверждение, положение.
С точки зрения учащихся, аксиома — лёгкий способ получить отличную оценку. Достаточно просто выучить формулировку. Ведь никаких доказательств для аксиомы учить не требуется.
Всего в геометрии насчитывается около 15 аксиом. В школьном курсе используются далеко не все. Некоторые из них используются в школьном курсе как само собой разумеющееся для нас. Приведем некоторые примеры довольно известных аксиом из школьного курса геометрии:
Что такое теорема
Совсем по-другому обстоят дела с теоремами. Слово теорема происходит от древнегреческого слова «theorema» — смотреть, рассматривать какое-либо утверждение.
Теоремы менее «любимы» учащимися, чем аксиомы. Если учитель попросит рассказать теорему, будет недостаточно, как для аксиомы, сообщить только её формулировку. Потребуется также дать доказательство теоремы.
Примеры формулировок теорем:
Каждое слово или предлог в формулировке играет существенную роль в передаче смысла выражения. Даже просто поменяв порядок слов можно сильно изменить смысл утверждения.
Помните, что все формулировки в геометрии были выверены несколькими тысячами лет развития математики лучшими умами планеты и не терпят никаких словесных изменений.
Что такое лемма
Среди теорем выделяют такие теоремы, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма происходит от древнегреческого слова «lemma» – предположение.
Что такое следствие в геометрии
Приведем примеры следствий из аксиомы о параллельности прямых:
Если подытожить все вышесказанное, то сравнивая геометрию с высотным домом, можно представить, что:
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя с самых основ (аксиом) к теоремам.
Невозможно понять геометрию 9 и 10 класса, не выучив аксиомы и теоремы 7 и 8 класса.
Источник
Аксиома и лемма в чем разница
Чем теорема отличается от аксиомы? И мне вопросик теорема вопросик аксиома
Теоре́ма (др.-греч. θεώρημα — «зрелище, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.
В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.
Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, не доказываемое в рамках данной теории и лежащее в основе доказательства других ее положений.[1] В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[1] Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии. Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории. Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[2]
Прочитайте и сами сделайте вывод
Юлия Сергеевна, я точно не помню. Там чего-то без доказательств, а к чему-то доказательство нужно. Или там где-то что-то однозначно, а что-то под сомнение ставится.
Если коротко,то. Теорема-утверждение,для которого требуется доказательство.Оксиома-не требует доказательства.
Аксиома принимается без доказательств, а теорему устанешь доказывать
Аксиома, в отличие то теоремы, не требует доказательств
Источник
Что такое аксиома, теорема и доказательство теоремы
Понятие аксиомы
Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.
Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.
Синоним аксиомы — постулат. Антоним — гипотеза.
Основные аксиомы евклидовой геометрии
Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.
А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.
Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:
Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
У этой аксиомы два следствия:
Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:
Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.
На картинке можно увидеть, как это выглядит:
Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!
Доказательство через синтез
Рассмотрим пример синтетического способа доказательства.
Теорема: сумма углов треугольника равна двум прямым.
Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.
Доказательство:
Проведем прямую DE, так чтобы она была параллельна AC.
Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.
Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.
Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.
Доказательство через анализ
Рассмотрим пример аналитического способа доказательства.
Теорема: диагонали параллелограмма пересекаются пополам.
Дан параллелограмм: ABCD.
Доказательство:
Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.
Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.
Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.
Теоремы без доказательств
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:
Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:
где a, b и c — стороны плоского треугольника,
α — угол напротив стороны а.
Следствия из теоремы косинусов:
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.
Источник
Понятие Теорема и Аксиома Лемма, Следствия с тестами кратко
В математических дисциплинах широко используются четкие понятия такие как определения, теоремы, леммы, аксиомы, расссмотрим что это такое?
теорема (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиома ми называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.
В математических текстах теоремами обычно называют только те доказанные утверждения, которые находят широкое применение в решении математических задач. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределенные утверждения). Менее важные утверждения-теоремы обычно называют лемма ми,предложениями, следствия ми, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называютгипотезами.
Наиболее знаменитыми являются теоремы Ферма, Пифагора и Птолемея.
Лемма (греч. λημμα — предположение) — доказанное утверждение, полезное не само по себе, а для доказательства других утверждений. Примеры известных лемм —лемма Евклида, лемма Жордана, лемма Гаусса, лемма Накаямы, лемма Гриндлингера, Лемма Лоренца, Лемма Лебедева.
Аксиома (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.
В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причем вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.
Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчета» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории.
Австрийский математик Курт Гедель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определенного уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдется хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы ).
Следствие — утверждение, которое выводится непосредственно из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Приведем примеры следствий из аксиомы о параллельности прямых:
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешел в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времен Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора ее аксиом.
Подведем итог и сделам сравнения и выявим сходства и различия
Тесты для самопроверки
1. Правило, которое принимается без доказательств.
2. Утверждение доказано с помощью аксиом, постулатов или других теорем, которые заведомо верны это
4.Математическое утверждение, которое НЕ требует доказательства, является
5.Если AB = 10, какое определение объясняет, почему AM = 5?
6. доказанное утверждение испольуемое для доказательства других утверждений
См. также
Статью про теорема я написал специально для тебя. Если ты хотел бы внести свой вклад в развии теории и практики, ты можешь написать коммент или статью отправив на мою почту в разделе контакты. Этим ты поможешь другим читателям, ведь ты хочешь это сделать? Надеюсь, что теперь ты понял что такое теорема,аксиома,лемма,следствия,аксиоматизация теории и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории введение в математику. основы
Источник
Теория множеств
Определение: | ||
Будем говорить, что множество [math]x[/math] является подмножеством
Формально: [math]forall x exists b forall y (y in b leftrightarrow (y in x & phi(y)))[/math] |
Определение: | ||||||||||||||||||
Пересечением множеств [math]x[/math] и [math]y[/math] называется множество, состоящее
2. Если существует хотя бы одно множество, то существует пустое множество. 4. Для двух множеств существует множество, являющееся их пересечением.
|
Свойства измерения отрезков и углов, аксиома, лемма и теорема, равенство отрезков и углов
Геометрическое место точек — это все точки плоскости или пространства, обладающие одним и тем же свойством. Например, окружность — это все точки плоскости, равноудалённые от центра. Биссектриса — это точки, равноудалённые от сторон угла. А срединный перпендикуляр — это все точки плоскости, равноудалённые от концов отрезка.
Аксиома — это истина, которая принимается без доказательств. Например, аксиомой является утверждение о том, что через данную точку вне прямой можно провести только одну прямую, параллельную данной. Также аксиомой является утверждение о том, что на данном луче от его начала можно отложить только один отрезок данной линейной меры.
Теорема — это истина, которая принимается после некоторых умозаключений. Примером может служить теорема о пересечении сторон треугольника, которую можно доказать, опираясь на аксиомы.
Лемма — это истина, которая принимается после некоторых умозаключений, полезная не сама по себе, а как основание для доказательств других истин.
Основные свойства измерения отрезков. 1) Каждый отрезок имеет свою, отличную от нуля, положительную линейную меру. 2) Если нa отрезке поставить точку, то она разделит его на два отрезка, сумма длин которых равна длине исходного отрезка. 3) На данной полупрямой от её начала можно отложить только один отрезок данной линейной меры.
Свойства измерения углов. 1) Каждый угол имеет свою, отличную от нуля, положительную градусную меру. 2) Если внутри угла провести полупрямую, то она разобьёт его на два угла, сумма градусных мер которых равна градусной мере исходного угла. 3) От данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры.
Отрезки с одинаковой линейной мерой являются равными. Углы с одинаковой градусной мерой являются равными.
Что такое аксиома, теорема и доказательство теоремы
Понятие аксиомы
Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.
Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.
Синоним аксиомы — постулат. Антоним — гипотеза.
Основные аксиомы евклидовой геометрии
Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.
А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.
Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:
Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
У этой аксиомы два следствия:
Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:
Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.
На картинке можно увидеть, как это выглядит:
Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!
Доказательство через синтез
Рассмотрим пример синтетического способа доказательства.
Теорема: сумма углов треугольника равна двум прямым.
Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.
Доказательство:
Проведем прямую DE, так чтобы она была параллельна AC.
Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.
Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.
Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.
Доказательство через анализ
Рассмотрим пример аналитического способа доказательства.
Теорема: диагонали параллелограмма пересекаются пополам.
Дан параллелограмм: ABCD.
Доказательство:
Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.
Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.
Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.
Теоремы без доказательств
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:
Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:
где a, b и c — стороны плоского треугольника,
α — угол напротив стороны а.
Следствия из теоремы косинусов:
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.
Источник
Что такое аксиома, теорема, следствие
В данной публикации мы рассмотрим, что из себя представляют аксиомы, теоремы и следствия. Определения сопровождаются соответствующими примерами для лучшего понимания.
Что такое аксиома
Для того, чтобы решить многие математические задачи, очень часто требуется выполнить определенные логические действия, благодаря которым удается получить то или иное решение/доказательство.
Но есть в математике такие утверждения, которые не требуют никаких доказательств.
Например:
Эти и другие подобные утверждения, не нуждающиеся в доказательстве и принимаемые в качестве исходных в какой-либо теории, называются аксиомами (от древнегреческого “axioma”, что означает “положение”, “утверждение”). Иногда их еще называются постулатами.
Аксиомы могут использоваться для решения конкретных задач или применяться для доказательства теорем.
Примечание: не допускается искажение формулировок аксиом и большинства теорем, т.е. их нужно учить наизусть.
Что такое теорема
В отличие от аксиомы, теорема – это суждение, которе требуется доказать. Т.е. в рассматриваемой теории для нее есть определенное доказательство.
Например:
Есть отдельный вид так называемых вспомогательных теорем, которые сами по себе не полезны и используются только для доказательства других теорем. Их называются леммами (от древнегреческого “lemma”, что означает “предположение”).
Например:
Если произведение нескольких сомножителей делится на простое число p, то по крайней мере один из сомножителей делится на p (лемма Евклида).
Что такое следствие
Следствие – это утверждение, которое было выведено из аксиомы или теоремы. И оно, также, требуется доказательства.
Например:
Источник
Что такое аксиома и теорема
Решение всех задач в геометрии построено на логических рассуждениях. С их помощью мы решаем задачи или выводим новые доказательства.
Некоторые из утверждений в геометрии мы используем не задумываясь. Вспомним высказывание, которое мы слышим при самом первом знакомстве с геометрией:
«Через две точки можно провести прямую, и притом только одну».
Но можно ли считать подобное рассуждение доказательством?
Другими словами, утверждение «Через две точки можно провести прямую, и притом только одну» не является доказанным только потому, что мы нарисовали рисунок и по рисунку «на глаз» стало все понятно.
В геометрии действует принцип: «Не верь глазам своим, пока не докажешь утверждение с помощью рассуждений».
Но что нам в таком случае делать? Ведь при решении задач мы используем какие-то очевидные утверждения, не задумываясь об их истинности.
Что такое аксиома
Слово аксиома произошло от древнегреческого слова «axioma» — утверждение, положение.
С точки зрения учащихся, аксиома — лёгкий способ получить отличную оценку. Достаточно просто выучить формулировку. Ведь никаких доказательств для аксиомы учить не требуется.
Всего в геометрии насчитывается около 15 аксиом. В школьном курсе используются далеко не все. Некоторые из них используются в школьном курсе как само собой разумеющееся для нас. Приведем некоторые примеры довольно известных аксиом из школьного курса геометрии:
Что такое теорема
Совсем по-другому обстоят дела с теоремами. Слово теорема происходит от древнегреческого слова «theorema» — смотреть, рассматривать какое-либо утверждение.
Теоремы менее «любимы» учащимися, чем аксиомы. Если учитель попросит рассказать теорему, будет недостаточно, как для аксиомы, сообщить только её формулировку. Потребуется также дать доказательство теоремы.
Примеры формулировок теорем:
Каждое слово или предлог в формулировке играет существенную роль в передаче смысла выражения. Даже просто поменяв порядок слов можно сильно изменить смысл утверждения.
Помните, что все формулировки в геометрии были выверены несколькими тысячами лет развития математики лучшими умами планеты и не терпят никаких словесных изменений.
Что такое лемма
Среди теорем выделяют такие теоремы, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма происходит от древнегреческого слова «lemma» – предположение.
Что такое следствие в геометрии
Приведем примеры следствий из аксиомы о параллельности прямых:
Если подытожить все вышесказанное, то сравнивая геометрию с высотным домом, можно представить, что:
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя с самых основ (аксиом) к теоремам.
Невозможно понять геометрию 9 и 10 класса, не выучив аксиомы и теоремы 7 и 8 класса.
Источник
Теоремы, аксиомы, определения
Доказательство. Теорема. Аксиома.
Начальные понятия. Определение.
Доказательство – рассуждение, устанавливающее какое-либо свойство.
Теорема – утверждение, устанавливающее некоторое свойство и требующее доказательства. Теоремы называются также леммами, свойствами, следствиями, правилами, признаками, утверждениями. Доказывая теорему, мы основываемся на ранее установленных свойствах; некоторые их них также являются теоремами. Однако некоторые свойства рассматриваются в геометрии как основные и принимаются без доказательств.
Аксиома – утверждение, устанавливающее некоторое свойство и принимаемое без доказательства. Аксиомы возникли из опыта, и опыт же проверяет их истинность в совокупности. Можно построить систему аксиом различными способами. Однако важно, чтобы принятый набор аксиом был минимальным и достаточным для доказательства всех остальных геометрических свойств. Заменяя в этом наборе одну аксиому другой, мы должны будем доказывать заменённую аксиому, так как она теперь уже не аксиома, а теорема.
Начальные понятия. В геометрии ( и вообще, в математике ) существуют понятия, которым невозможно дать сколько-нибудь осмысленное определение. Мы их принимаем как начальные понятия. Смысл этих понятий может быть установлен только на основании опыта. Так, понятия точки и прямой линии являются начальными. На основе начальных понятий мы можем дать определения всем остальным понятиям.
Источник
Теорема аксиома определение примеры аксиом и теорем
Чем теорема отличается от аксиомы? И мне вопросик теорема вопросик аксиома
Теоре́ма (др.-греч. θεώρημα — «зрелище, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.
В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.
Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, не доказываемое в рамках данной теории и лежащее в основе доказательства других ее положений.[1] В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[1] Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии. Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории. Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[2]
Прочитайте и сами сделайте вывод
Юлия Сергеевна, я точно не помню. Там чего-то без доказательств, а к чему-то доказательство нужно. Или там где-то что-то однозначно, а что-то под сомнение ставится.
Если коротко,то. Теорема-утверждение,для которого требуется доказательство.Оксиома-не требует доказательства.
Аксиома принимается без доказательств, а теорему устанешь доказывать
Аксиома, в отличие то теоремы, не требует доказательств
Источник
Содержание материала
- Значение слова «аксиома» в словарях русского языка
- Аксиома это:
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Аксиома
- Видео
- Философский словарь (Конт-Спонвиль)
- Педагогический терминологический словарь
- История аксиомы
- Аксиомы Евклида
- Следствия из аксиомы
- Аксиома Архимеда
- Понятие теоремы
- Понятия свойств и признаков
Значение слова «аксиома» в словарях русского языка
Аксиома это:
Аксио́ма ( «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Википедия
Аксиома
ж. 1. Положение какой-либо научной теории, принимаемое без доказательств в силу непосредственной убедительности. 2. Неоспоримая, бесспорная, не требующая доказательств истина.
Большой современный толковый словарь русского языка
Аксиома
(гр. axioma) 1) отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства; 2) перен. бесспорная, не требующая доказательств истина.
Новый словарь иностранных слов
Аксиома
ж. 1) Исходное положение какой-л. научной теории, принимаемое без доказательств. 2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.
Новый толково-словообразовательный словарь русского языка Ефремовой
Аксиома
жен. , греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина.
Словарь Даля
Аксиома
[гр. axioma] 1. отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства; 2. * бесспорная, не требующая доказательств истина.
Словарь иностранных выражений
Аксиома
положение, принимаемое без доказательств Lib аксиома исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений Spec
Словарь русского языка Ожегова
Аксиома
(греч. axioma), положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.
Современный толковый словарь, БСЭ
Аксиома
аксиома ж. 1) Исходное положение какой-л. научной теории, принимаемое без доказательств. 2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.
Толковый словарь Ефремовой
Аксиома
аксиомы, ж. (греч. axioma). Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.).
Толковый словарь русского языка Ушакова
Видео
Философский словарь (Конт-Спонвиль)
аксиома
Аксиома
♦ Axiome
Недоказуемое положение, служащее для доказательства других положений. Являются ли аксиомы истинными? Долгое время считалось, что являются. По мнению Спинозы или Канта, аксиома – это истина, очевидность которой ясна без доказательств, а потому и не нуждается в них. Современные математики и логики склонны рассматривать аксиомы как чистые конвенции или гипотезы, которые не могут быть очевидными истинами. Отныне истина заключается не в самих положениях (если аксиома не есть истина, ни одна теорема не может быть истинной), а в объединяющих их отношениях импликации или дедукции. Следовательно, аксиом в традиционном понимании термина не существует, есть лишь постулаты (Постулат). Но и это заявление – постулат, а не аксиома.
Педагогический терминологический словарь
аксиома
(греч. axioma)
бесспорная истина, не требующая доказательств. В педагогике наиболее известны А. апперцепции и А. двойственности. А. апперцепции (см. Апперцепция) констатирует зависимость всех последующих восприятий от содержания и структуры предшествующего опыта. В этой А. отражено то фундаментальное положение, что одно и то же воздействие производит несходное впечатление на разных людей из-за заведомых различий в их индивидуальном опыте. А. апперцепции объясняет сложность, мучительность внутренней работы, содержанием которой становится переоценка ценностей.
А. двойственности позволяет рассматривать и интерпретировать личность как единство психического и физического, материального и идеального в их историческом развитии и внутренней противоречивости. Человеческая природа одновременно духовна и материальна. В человеческой психике обнаруживается наличие и взаимодействие обоих начал. А. орудийно-знакового опосредования процесса усвоения культуры в ходе воспитания фиксирует тот факт, что обучать и воспитывать можно только посредством знаковых систем и через предметы, созданные человеком для человека.
(Бим-Бад Б.М. Педагогический энциклопедический словарь. — М., 2002. С. 14)
История аксиомы
Аксиоматический метод появился в древней Греции. Термин аксиома встречается у древнегреческих философов Аристотеля (384–322 гг. до н. э.) и Евклида (325–265 гг. до н. э.).
Аксиомы Евклида
Самой известной аксиомой Евклида была аксиома о параллельных прямых. Он сформулировал её в своей книге «Начала».
Аксиома звучит так: через любую точку, которая расположена вне данной прямой, можно провести только одну прямую параллельную данной.
Т. е. если дана прямая и любая точка (которая не лежит на этой прямой), то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
Следствия из аксиомы
У этой аксиомы два следствия:
- прямая, пересекающая одну параллельную прямую, обязательно пересечёт и другую;
- если две прямые параллельны третьей, то между собой они также параллельны.
Аксиома Архимеда
Для отрезков: если на прямой имеются два отрезка А (меньший из них) и B, то, складывая А достаточное количество раз, можно будет покрыть больший (B).
Другими словами, Архимед утверждал, что не существуют бесконечно малые и бесконечно большие величины. В качестве математической формулы аксиому можно записать так:
где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
- если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
- если две прямые параллельны третьей прямой, то они параллельны.
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
- Синтетический или синтез — метод, при котором данное предложение выступает, как необходимое следствие другого, уже доказанного.
- Аналитический или анализ — обратный синтезу способ. Рассуждения всегда начинаются с доказываемой теоремы и закачиваются другой известной истиной.
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
- Способ наложения — когда одну геометрическую величину накладывают на другую. Этим способом убеждаются в равенстве или неравенстве геометрических протяжений в зависимости от того, совмещаются они или нет при наложении.
- Способ пропорциональности — применение свойств пропорций. Этот способ пригодится для доказательства теорем про подобные фигуры и пропорциональные отрезки.
- Способ пределов — когда вместо данной величины берут свойства другой, близкой к ней. А потом перекладывают эти выводы на исходные данные.
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
- прямая теорема: в треугольнике против равных сторон лежат равные углы.
- обратная теорема: в треугольнике против равных углов лежат равные стороны.
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
- Прямая: если при пересечении двух прямых третьей соответственные углы равны, то данные прямые параллельны.
- Обратная: если две прямые параллельны, то при пересечении их третьей, соответственные углы равны.
- Противоположная: если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.
- Обратная противоположной: если прямые не параллельны, соответственные углы не равны.
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.