Практическое применение теоремы перельмана

Кrab Bark

Просветленный

(22482)


12 лет назад

Это не в сфере практической пользы, хотя когда-нибудь может случайно и пригодиться. Просто у человека, или его разума, есть потребность «понимать», приводить все в систему.

«Великие математики всех времён выражали уверенность, что развитие математики оправдывается красотой результатов и потребностью познания истины. Эта потребность считалась бескорыстной, так что математики часто с пафосом отвергали критерий практической полезности своей науки. »
( Г. Штейнгауз. Математика — посредник между духом и материей)

«За чистую математику, которая никогда не найдет себе применения! »
(известный тост математика Дж. Харди)

«Можно обладать некрасивой женщиной или обычной и завидовать тем, кто обладает красавицами, но в конце концов женщина есть женщина; зато люди, равнодушные к математике, глухие к ней, всегда казались мне калеками! Они беднее на целый мир — такой мир! Они даже не догадываются, что он существует! Математическое построение – это безмерность, оно ведет, куда хочет, человек будто создает его, а в сущности лишь открывает ниспосланную неведомо откуда платоновскую идею, восторг и бездну, ибо чаще всего она ведет никуда… »
(С. Лем, «Формула Лимфатера»)

Леонид

Знаток

(379)


12 лет назад

Во-первых Пуанкаре выдвинул гипотезу, а Перельман на основе этой гипотезы доказал теорему, которая имеет важное значение для понимания строения Вселенной. «По-простому» основная идея заключается в том, что что любое тело без дырок можно без разрезания и склеивания превратить в шар. А это важно для понимания процесса расширения Вселенной при ее рождении..

Арт

Профи

(570)


3 года назад

Вы тут говорите о том что математика не служит вообще никакой практической пользы да что вы такое говорите то??? Как это не в сфере практической пользы??? Послушать вас всех тут, так от математики вообще никакой практической пользы никогда не было и не будет… Люди да вы чего??! В каком веке вы живёте то а??? А самолёты которые спроектированы на основе математики так чтобы они элементарно бы держались в воздухе, а космические корабли в космосе на основе которых сегодня работают мобильные телефоны и многое при многое другое, да вся наша жизнь состоит и строится из математики если так хорошо разобраться, в том числе и наша логика и все наши решения которые влияют как на других так и прежде всего и на нас самих же и на всю нашу жизнь это тоже та же самая математика… Так что теория Пуанкаре доказанная Перельманом является очень большим достижением, например в том что Перельман доказал на основе этой теории то что точку А можно соединить с точкой Б на каком бы удалении та бы не была от точки А практически сразу даже если та отстоит от этой точки на расстоянии в несколько миллионов световых лет от земли, вы представляете тогда что это значит??? Это значит то что телепортация (мгновенное перемещение из точки А в точку Б и обратно) возможно… То есть это означает то что ТЕЛЕПОРТАЦИЯ ВОЗМОЖНА… Когда то давно люди и не мечтали о том что возможно будет разговаривать друг с другом находясь за несколько тысяч километров друг от друга а теперь мы этому даже и не удивляемся… Вот точно так же и с телепортацией — она возможна… Ещё на основе доказательств Григория Перельмана вытекает из этого то что и путешествия во времени туда и обратно тоже ВОЗМОЖНЫ… Ну и как ну вы всё это себе представляете или не а, какие же это чудеса тогда открываются тогда (подчёркиваю П Р А К Т И Ч Е С К И Е чудеса) в науке и в нашей обычной жизни??? Вооот… А вы говорите НИКАКОЙ ПРАКТИЧЕСКОЙ ПОЛЬЗЫ, Народ не будьте вы такою непросветной г л у п о т о й…

Vadim Lunev

Ученик

(108)


2 года назад

никакой практической пользы от этой теоремы нет, во всяком случае сегодня. Без сомнения ребенок понимает что куб или цилиндр (из пластилина) можно легко превратить в сферу очень простыми действиями, а из пластилинового бублика никогда не получится шар… Математики говорят много умных слов непонятных простым смертным чтобы оправдать свои никчемные занятия ничем. А на доводы что самолеты и космические корабли построены на основании математики ответ прост — это математика 5 класса и обычная геометрия, упаси бог пытаться использовать теорему Пуанкаре при проектировании космического корабля

studio lik

Ученик

(142)


1 год назад

по мне так, каждый ребенок давно знает что из пластилинового шарика можно без пробоем слепить зайку или кубик или еще что нибудь путем вытягивания и стягивания пластилина. зачем это доказывать и вообще зачем было нужно придумывать какую-то теорию. и это касаемо только форм и фигур на словах, на деле полная туфта, попробуй из деревянной двери сделай сферу) посмотрела бы я на эти старания) можно конечно в муку измельчить дверь и потом из трухи склеить шарик)) только к науке это не имеет никакого отношения.

Что человечеству дало доказательство гипотезы Пуанкаре?

Сайтахметов Измаил

26 декабря 2019  · 530,2 K

Редактор, автор и переводчик книг по математике  · 29 дек 2019  ·

Начнем с того, что отдельно гипотезу Пуанкаре не доказывали. Ее истинность следовала из решения одной задачи классификации, над которой работало много народа, а завершил решение Григорий Перельман.

Классификации очень важны, потому что приводят наши знания в систему, позволяют все расставить по полочкам.

Вот Менделеев сумел классифицировать все химические элементы — расставил все по свом местам в таблице; это было серьезное продвижение в химии. У таблицы Менделеева нет непосредственного бытового применения, на хлеб ее не намажешь, ее значение научное, а не бытовое.

В математике тоже все расставляют по полочкам — конические сечения, замощения плоскости правильными многоугольниками, виды треугольников, функций, уравнений, тел вращения и т.п. Классификации есть и в других науках.

Теперь ближе к гипотезе.

Давайте посмотрим на «хорошие» двумерные поверхности («хорошие» — это компактные ориентируемые без края). Чтобы не объяснять эти трудные слова, я просто нарисую, чего НЕ должно быть:

image.png

Оказывается, все хорошие поверхности можно классифицировать, любая из них эквилвалентна поверхности сферы, возможно, с несколькими ручками.

Вот для примера сфера с тремя ручками:

image.png

Все хорошие двумерные поверхности к чему-то такому приводятся, меняться может только число ручек. Этот результат известен с XIX века.

Аналог двумерных поверхностей — трехмерные многообразия, их так просто уже не нарисуешь. Среди них есть и трехмерная сфера (это НЕ поверхность трехмерного шара); гипотеза Пуанкаре о том, как характеризовать трехмерную сферу. Уильям Тёрстон придумал способ классифицировать все трехмерные многообразия — этот путь принято называть программой геометрзации Тёрстона. Над ней работало много математиков, и последний этап завершил Григорий Перельман.

Удалось расклассифицировать все хорошие тремерные многообразия. Гипотеза Пуанкаре как бы описывала одну ячейку этой классификации.

Как ни странно, многообразия более высоких размерностей были классифицированы еще раньше; так что математики как бы завершили создание «таблицы Менделеева» для хороших многообразий. В этой таблице нашлась клеточка и для 3-сферы, которую пытался характериовать Пуанкаре.

236,0 K

Это — топология, а не математика — в целом. Кроме собственно топологов, математики — страшно далеки от этой… Читать дальше

Комментировать ответ…Комментировать…

поэт, музыкант, математик, инженер, программист, котельщик, электрик, сантехник  · 8 окт 2021  ·

Это доказательство дало человечеству развитие методов математических доказательств, которые можно применять для решения других математических вопросов.

5,2 K

г-н Корман является поэтом, музыкантом, математиком, инженером и программистом..,наверное ещё не все перечислил 

Комментировать ответ…Комментировать…

Главный редактор издания «Популярный университет», научный журналист, химик  · 28 дек 2019  · popuni.ru

Начнем с этого, что представляет собой гипотеза Пуанкаре. Ее определение звучит так: «Всякое замкнутое n-мерное многообразие гомотопически эквивалентно n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей». Что это значит?

Представим себе шар из теста. При желании из него можно вылепить практически что угодно — фигурку животного, куб, трапецию или конус. Форм… Читать далее

448,6 K

Чистую математику часто трудно перевести на язык физики (поставить ей в соответствие реальный физический процесс)… Читать дальше

Комментировать ответ…Комментировать…

военный инженер-математик на пенсии,
интересы: гномоника, воспитание детей, Van-life.
  · 31 мая 2021  · analemma.ru

Одно из самых «понятных» (т.е. детям) объяснений гипотезы Пуанкаре, которое я где-то читал:

Предположим мы запускаем в открытый космос корабль, связанный с Землей бесконечно растяжимой резинкой. Космический корабль как угодно долго путешествует по вселенной и потом возвращается домой. Вопрос: резинка за что-нибудь зацепится? Пуанкаре предположил, что нет.

6,8 K

Комментировать ответ…Комментировать…

Автор книги «Обратный путь». Помогаю понять себя и мир. Интересы: психология, философия…  · 6 февр 2021

Григорий Перельман доказал таким образом, что деньги — не главное. Его отказ от нобелевки — это самая масштабная благотворительная акция для поклоняющегося золотому тельцу человечества. Очень многие после его отказа лишний раз задумались о ценности денег. А гипотеза Пуанкаре — так, прикрытие)

29,5 K

Перельману никто Нобелевскую премию не предлагал и он от нее не отказывался. Нобелевскую премию математикам не… Читать дальше

Комментировать ответ…Комментировать…

Не понятно, почему доказательство гипотезы Пуанкаре должно было что-то дать «человечеству»? Математика «человечеству» ничего не должна, «человечество» для математики не представляет особого интереса. Точнее, никакого.

12,1 K

Комментировать ответ…Комментировать…

Пенсионер, новости науки, политики, истории.  · 29 мар 2021

Сделан ещё один шажок к пониманию сути мира в котором мы живём. Мы на первой ступеньке (выход в космос) его изучения. Эта лестница бесконечна если опять не прервёт ядерная война, оледенение и всё будет начинаться снова. Конечно нужны споры о веществе — пространстве-времени в них рождалась и рождается истина. Но вы всё о материальном. А сон материален?

13,5 K

Ядерной войны никогда не было иначе как фантазиях.

Комментировать ответ…Комментировать…

Генетика растений, эволюция, биология развития, эпигенетика.  · 26 мая 2021

А если гипотетический бублик очень долго скручивать вдоль одной и той же оси. Супервитки в конце концов образуют визуально сферу. Расстоянием между супервитками в конце концов можно будет пренебречь, и получится местами локально неоднородная, но термодинамически вполне скомпенсированная материальная сфера. Хотя наверно есть варианты.

7,4 K

Минусовые никогда не крутили бублики. Это прискорбно рребята..🤣

Комментировать ответ…Комментировать…

Есть что-то неправильное в рассуждениях и при постановке задачи «теорема Пуанкаре», и при ее доказательстве. Как теоретики, вообще сторонники таких моделей, фантазируют себе преобразование «сферы» в «тор»? Рисуют в сознании тряпичную сферу, и пытаются доказать, что ее нельзя ни как пере-развернуть в тор :))) ? Или фантазируют себе морфинг каких-то проекций 3D… Читать далее

1,1 K

Комментировать ответ…Комментировать…

Когнитивист. Исследую социальное тело личности и рациональное мышление.  · 24 нояб 2020

К теории большого взрыва данная абстрактивная модель не имеет никакого отношения! Если речь идет о классической математике, то как туда запихнуть темную материю, квантовую запутанность? Это извините, научный маразм. Сравнивать бублик и вселенную с ее черными дырами, квазарами, силой тяготения, войдами и прочим. Сравнивать ньютоновскую форму односложного предмета и свет… Читать далее

446

Комментировать ответ…Комментировать…

Представленная в 1887 году Анри Пуанкаре гипотеза практически сразу же после появления взволновала общественность. «Всякое замкнутое n-мерное многообразие гомотопически эквивалентно n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей» – именно так звучит данная гипотеза.

Над нею безуспешно ломали голову ученые – геометры и физики со всего мира. Так продолжалось около 100 лет. Раскрытие секрета утверждения в 2006 году стало настоящей сенсацией. И самое главное – доказательство теоремы было представлено российским математиком Григорием Перельманом.

Математик Григорий Перельман — лауреат медали Филдса

Математик Григорий Перельман — лауреат медали Филдса

Вопросы, связанные со сферой двумерного вида, были понятны в девятнадцатом веке. Положения многомерных объектов определены в 1980-х годах. Сложности создавало только определение трехмерных объектов. В 2002 году российским ученым для доказательства было использовано уравнение «плавной эволюции». Благодаря этому ему удалось определить способность трехмерных поверхностей, не имеющих разрывов, деформироваться в трехмерные сферы. Определение, представленное Перельманом, вызвало интерес множества ученых, которые подтвердили, что это решение современного поколения, открывающая перед наукой новые горизонты, обеспечивающая широкие возможности для дальнейших открытий.

Представленная российским ученым теория имела множество недочетов, требовала ряда доработок. В связи с этим ученые взялись за поиски доказательств объяснения. Некоторые из них потратили на это всю свою жизнь.

Гипотеза Пуанкаре простым языком

Гипотеза Пуанкаре простым языком

Гипотеза Пуанкаре простым языком

Вкратце теорию можно расшифровать в нескольких предложениях. Вообразите немного спущенный воздушный шарик. Согласитесь, это совсем не сложно. Ему очень легко придать необходимую форму – куба или овальной сферы, человека или животного. Доступное разнообразие форм просто впечатляет. При этом существует форма, являющаяся универсальной, – шар. При этом формой, которую невозможно придать шарику, не прибегая к разрывам, является бублик – форма с дыркой. Согласно определению, даваемому гипотезой, предметы, в форме которые не предусмотрено отверстие сквозного типа, отличаются одинаковой основой. Наглядный пример – шар. При этом тела с отверстиями, на в математике им дано определение – тор, отличаются свойством совместимости друг с другом, но при этом не со сплошными объектами.

Например, если мы захотим, то без проблем сможем вылепить из пластилина зайца или кошку, потом превратить фигурку в шар, затем – в собаку или яблоко. При этом можно обойтись без разрывов. В том случае, если изначально был вылеплен бублик, то из него может получиться кружка либо «восьмерка», придать массе форму шара уже не удастся. Представленные примеры наглядно показывают несовместимость сферы и тора.

Гипотеза Пуанкаре применение

Понимание значения гипотезы Пуанкаре наряду с определением открытия, сделанного Григорием Перельманом, позволит намного быстрее разобраться с данным утверждением. Гипотеза может быть использована ко всем материальным объектам нашей Вселенной. При этом вполне допустимо ее верность и применимость положений и непосредственно ко Вселенной.

Можно предположить, что началом появления материи послужила незначительная точка одномерного типа, которая прямо сейчас формируется в многомерную сферу. Соответственно возникает множество вопросов – возможно ли найти границы, выявить единый механизм свертывания объекта к первоначальному состоянию и т.д.

Российским ученым было математически доказано, что если поверхность односвязна, не является бубликом, то в результате деформации, обеспечивающей полное сохранение характеристик исследуемой поверхности, можно легко и просто получить арбуз или, проще говоря, сферу. Это может быть любой круглый предмет, который без каких-либо трудностей может быть стянут в точку. Обернув сферу можно при помощи обычного шнурка. В последствии шнур можно связать в узелок. Проделать тоже самое с бубликом не получится.

Самая простая модель, представляющая шар, может быть свёрнута в виде точки. Если Вселенная – это шар, то значит, что она также может быть свернута в одну точку, а после развернута снова. Таким образом Перельман показывает своё умение теоретического управления Вселенной.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Сергей Дужин,
доктор физ.-мат. наук, старший научный сотрудник Санкт-Петербургского отделения Математического института РАН
«Троицкий вариант» №10(104), 22 мая 2012 года

Сергей Дужин. Фото Н. Четвериковой

Последним великим достижением чистой математики называют доказательство петербуржцем Григорием Перельманом в 2002–2003 годах гипотезы Пуанкаре, высказанной в 1904 году и гласящей: «всякое связное, односвязное, компактное трехмерное многообразие без края гомеоморфно сфере S3».

В этой фразе имеется несколько терминов, которые я постараюсь объяснить так, чтобы их общий смысл стал понятен нематематикам (я предполагаю, что читатель закончил среднюю школу и кое-что из школьной математики еще помнит).

Начнем с понятия гомеоморфизма, центрального в топологии. Вообще, топологию часто определяют как «резиновую геометрию», т. е. как науку о свойствах геометрических образов, которые не меняются при плавных деформациях без разрывов и склеек, а точнее, при возможности установить между двумя объектами взаимно-однозначное и взаимно-непрерывное соответствие.

Главную идею проще всего объяснить на классическом примере кружки и бублика. Первую можно превратить во второй непрерывной деформацией.

Эти рисунки наглядно показывают, что кружка гомеоморфна бублику, причем этот факт верен как для их поверхностей (двумерных многообразий, называемых тором), так и для заполненных тел (трехмерных многообразий с краем).

Изображение: «Троицкий вариант»

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы.

  1. Трехмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трехмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т. е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем — у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.
  2. Связное. Понятие связности здесь самое простое. Многообразие связно, если оно состоит из одного куска, или, что то же самое, любые две его точки можно соединить непрерывной линией, не выходящей за его пределы.
  3. Односвязное. Понятие односвязности сложнее. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.
  4. Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определенные точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Размерность многообразия — это число степеней свободы у точки, которая на нем «живет». У каждой точки есть окрестность в виде диска соответствующей размерности, т. е. интервала прямой в одномерном случае, круга на плоскости в двумерном, шара в трехмерном и т. д. Одномерных связных многообразий без края с точки зрения топологии всего два: это прямая и окружность. Из них только окружность компактна.

Примером пространства, не являющегося многообразием, может служить, например, пара пересекающихся линий — ведь у точки пересечения двух линий любая окрестность имеет форму креста, у нее нет окрестности, которая была бы сама по себе просто интервалом (а у всех других точек такие окрестности есть). Математики в таких случаях говорят, что мы имеем дело с особым многообразием, у которого есть одна особая точка.

Двумерные компактные многообразия хорошо известны. Если рассматривать только ориентируемые1 многообразия без края, то они с топологической точки зрения составляют простой, хотя и бесконечный, список: и так далее. Каждое такое многообразие получается из сферы приклеиванием нескольких ручек, число которых называется родом поверхности.

Изображение: «Троицкий вариант»

На рисунке изображены поверхности рода 0, 1, 2 и 3. Чем выделяется сфера из всех поверхностей этого списка? Оказывается, односвязностью: на сфере любую замкнутую кривую можно стянуть в точку, а на любой другой поверхности всегда можно указать кривую, которую стянуть в точку по поверхности невозможно.

Любопытно, что и трехмерные компактные многообразия без края можно в некотором смысле классифицировать, т. е. выстроить в некоторый список, хотя не такой прямолинейный, как в двумерном случае, а имеющий довольно сложную структуру. Тем не менее, трехмерная сфера S3 выделяется в этом списке точно так же, как двумерная сфера в списке, приведенном выше. Тот факт, что любая кривая на S3 стягивается в точку, доказывается столь же просто, как и в двумерном случае. А вот обратное утверждение, а именно, что это свойство уникально именно для сферы, т. е. что на любом другом трехмерном многообразии есть нестягиваемые кривые, очень трудное и в точности составляет содержание гипотезы Пуанкаре, о которой мы ведем речь.

Важно понимать, что многообразие может жить само по себе, о нем можно мыслить как о независимом объекте, никуда не вложенном. (Представьте себе жизнь двумерных существ на поверхности обычной сферы, не подозревающих о существовании третьего измерения.) К счастью, все двумерные поверхности из приведенного выше списка можно вложить в обычное пространство R3, что облегчает их визуализацию. Для трехмерной сферы S3 (и вообще для любого компактного трехмерного многообразия без края) это уже не так, поэтому необходимы некоторые усилия для того, чтобы понять ее строение.

По-видимому, простейший способ объяснить топологическое устройство трехмерной сферы S3 — это при помощи одноточечной компактификации. А именно, трехмерная сфера S3 представляет собой одноточечную компактификацию обычного трехмерного (неограниченного) пространства R3.

Поясним эту конструкцию сначала на простых примерах. Возьмем обычную бесконечную прямую (одномерный аналог пространства) и добавим к ней одну «бесконечно удаленную» точку, считая, что при движении по прямой вправо или влево мы в конце концов попадаем в эту точку. С топологической точки зрения нет разницы между бесконечной прямой и ограниченным открытым отрезком (без концевых точек). Такой отрезок можно непрерывно изогнуть в виде дуги, свести поближе концы и вклеить в место стыка недостающую точку. Мы получим, очевидно, окружность — одномерный аналог сферы.

Изображение: «Троицкий вариант»

Подобным же образом, если я возьму бесконечную плоскость и добавлю одну точку на бесконечности, к которой стремятся все прямые исходной плоскости, проходимые в любом направлении, то мы получим двумерную (обычную) сферу S2 . Эту процедуру можно наблюдать при помощи стереографической проекции, которая каждой точке P сферы, за исключением северного полюса N, ставит в соответствие некоторую точку плоскости P’.

Таким образом, сфера без одной точки — это топологически все равно, что плоскость, а добавление точки превращает плоскость в сферу.

В принципе, точно такая же конструкция применима и к трехмерной сфере и трехмерному пространству, только для ее осуществления необходим выход в четвертое измерение, и на чертеже это не так просто изобразить. Поэтому я ограничусь словесным описанием одноточечной компактификации пространства R3.

Представьте себе, что к нашему физическому пространству (которое мы, вслед за Ньютоном, считаем неограниченным евклидовым пространством с тремя координатами x, y, z) добавлена одна точка «на бесконечности» таким образом, что при движении по прямой в любом направлении вы в нее попадаете (т. е. каждая пространственная прямая замыкается в окружность). Тогда мы получим компактное трехмерное многообразие, которое и есть по определению сфера S3.

Легко понять, что сфера S3 односвязна. В самом деле, любую замкнутую кривую на этой сфере можно немного сдвинуть, чтобы она не проходила через добавленную точку. Тогда мы получим кривую в обычном пространстве R3, которая легко стягивается в точку посредством гомотетий, т. е. непрерывного сжатия по всем трем направлениям.

Для понимания, как устроено многообразие S3, весьма поучительно рассмотреть его разбиение на два полнотория. Если из пространства R3 выбросить полноторие, то останется нечто не очень понятное. А если пространство компактифицировать в сферу, то это дополнение превращается тоже в полноторие. То есть сфера S3 разбивается на два полнотория, имеющих общую границу — тор.

Изображение: «Троицкий вариант»

Вот как это можно понять. Вложим тор в R3 как обычно, в виде круглого бублика, и проведем вертикальную прямую — ось вращения этого бублика. Через ось проведем произвольную плоскость, она пересечет наше полноторие по двум кругам, показанным на рисунке зеленым цветом, а дополнительная часть плоскости разбивается на непрерывное семейство красных окружностей. К их числу относится и центральная ось, выделенная более жирно, потому что в сфере S3 прямая замыкается в окружность. Трехмерная картина получается из этой двумерной вращением вокруг оси. Полный набор повернутых окружностей заполнит при этом трехмерное тело, гомеоморфное полноторию, только выглядящее необычно.

В самом деле, центральная ось будет в нем осевой окружностью, а остальные будут играть роль параллелей — окружностей, составляющих обычное полноторие.

Чтобы было с чем сравнивать 3-сферу, я приведу еще один пример компактного 3-многообразия, а именно трехмерный тор. Трехмерный тор можно построить следующим образом. Возьмем в качестве исходного материала обычный трехмерный куб:

Изображение: «Троицкий вариант»

В нем имеется три пары граней: левая и правая, верхняя и нижняя, передняя и задняя. В каждой паре параллельных граней отождествим попарно точки, получающиеся друг из друга переносом вдоль ребра куба. То есть будем считать (чисто абстрактно, без применения физических деформаций), что, например, A и A’ — это одна и та же точка, а B и B’ — тоже одна точка, но отличная от точки A. Все внутренние точки куба будем рассматривать как обычно. Сам по себе куб — это многообразие с краем, но после проделанных склеек край замыкается сам на себя и исчезает. В самом деле, окрестностями точек A и A’ в кубе (они лежат на левой и правой заштрихованных гранях) служат половинки шаров, которые после склейки граней сливаются в целый шарик, служащий окрестностью соответствующей точки трехмерного тора.

Чтобы ощутить устройство 3-тора исходя из обыденных представлений о физическом пространстве, нужно выбрать три взаимно перпендикулярных направления: вперед, влево и вверх — и мысленно считать, как в фантастических рассказах, что при движении в любом из этих направлений достаточно долгое, но конечное время, мы вернемся в исходную точку, но с противоположного направления. Это тоже «компактификация пространства», но не одноточечная, использованная раньше для построения сферы, а более сложная.

На трехмерном торе есть нестягиваемые пути; например, таковым является отрезок AA’ на рисунке (на торе он изображает замкнутый путь). Его нельзя стянуть, потому что при любой непрерывной деформации точки A и A’ обязаны двигаться по своим граням, оставаясь строго друг напротив друга (иначе кривая разомкнется).

Итак, мы видим, что бывают односвязные и неодносвязные компактные 3-многообразия. Перельман доказал, что односвязное многообразие ровно одно.

Исходной идеей доказательства является использование так называемого «потока Риччи»: мы берем односвязное компактное 3-многообразие, наделяем его произвольной геометрией (т. е. вводим некоторую метрику с расстояниями и углами), а затем рассматриваем его эволюцию вдоль потока Риччи. Ричард Гамильтон, который высказал эту идею в 1981 году, надеялся, что при такой эволюции наше многообразие превратится в сферу. Оказалось, что это неверно, — в трехмерном случае поток Риччи способен портить многообразие, т. е. делать из него немногообразие (нечто с особыми точками, как в приведенном выше примере пересекающихся прямых). Перельману путем преодоления неимоверных технических трудностей, с использованием тяжелого аппарата уравнений с частными производными, удалось внести поправки в поток Риччи вблизи особых точек таким образом, что при эволюции топология многообразия не меняется, особых точек не возникает, а в конце концов, оно превращается в круглую сферу. Но нужно объяснить, наконец, что же такое этот поток Риччи. Потоки, использованные Гамильтоном и Перельманом, относятся к изменению внутренней метрики на абстрактном многообразии, и это объяснить довольно трудно, поэтому я ограничусь описанием «внешнего» потока Риччи на одномерных многообразиях, вложенных в плоскость.

Представим себе гладкую замкнутую кривую на евклидовой плоскости, выберем на ней направление и рассмотрим в каждой точке касательный вектор единичной длины. Тогда при обходе кривой в выбранном направлении этот вектор будет поворачиваться с какой-то угловой скоростью, которая называется кривизной. В тех местах, где кривая изогнута круче, кривизна (по абсолютной величине) будет больше, а там, где она более плавная, кривизна будет меньше.

Кривизну будем считать положительной, если вектор скорости поворачивает в сторону внутренней части плоскости, разбитой нашей кривой на две части, и отрицательной, если он поворачивает вовне. Это соглашение не зависит от направления обхода кривой. В точках перегиба, где вращение меняет направление, кривизна будет равна 0. Например, окружность радиуса 1 имеет постоянную положительную кривизну, равную 1 (если считать ее в радианах).

Теперь забудем про касательные векторы и к каждой точке кривой прикрепим, наоборот, перпендикулярный ей вектор, по длине равный кривизне в данной точке и направленный вовнутрь, если кривизна положительна, и вовне, если отрицательна, а затем заставим каждую точку двигаться в направлении соответствующего вектора со скоростью, пропорциональной его длине. Вот пример:

Оказывается, что любая замкнутая кривая на плоскости ведет себя при такой эволюции подобным же образом, т. е. превращается, в конце концов, в окружность. Это и есть доказательство одномерного аналога гипотезы Пуанкаре при помощи потока Риччи (впрочем, само утверждение в данном случае и так очевидно, просто способ доказательства иллюстрирует, что происходит в размерности 3).

Заметим в заключение, что рассуждение Перельмана доказывает не только гипотезу Пуанкаре, но и гораздо более общую гипотезу геометризации Тёрстона, которая в известном смысле описывает устройство всех вообще компактных трехмерных многообразий. Но этот предмет лежит уже за рамками настоящей элементарной статьи.


1 За неимением места, я не буду говорить о неориентируемых многообразиях, примером которых может служить известная бутылка Клейна — поверхность, которую нельзя вложить в пространство без самопересечений.

Математик Алексей Савватеев о теореме Пуанкаре — Перельмана, сравнении фигур и топологии

Гипотеза Пуанкаре, а ныне теорема Пуанкаре — Перельмана, — это фундаментальное наблюдение в топологии. С точки зрения человека, она описывает мир, в котором мы живем. Но что мы знаем о нашем мире? Во-первых, он трехмерный, а значит, из любой фиксированной точки мы можем провести три оси, которые будут перпендикулярны друг другу попарно, а четвертую ось уже невозможно провести. Четвертая ось уходит в новые измерения, поэтому она не видна. Во-вторых, в районе любой точки, в которой ты находишься, мир устроен одинаково, и обзор с каждой точки похож на обзор с другой. Локально он устроен как внутренность футбольного мяча. Если говорить научным языком, то наш мир является гладким трехмерным многообразием.

Следующий вопрос — о бесконечности нашего мира. Если у нас есть возможность добраться до любой точки во Вселенной за конечное время, даже за миллиарды миллиардов лет, то мир не бесконечен. Я не очень разбираюсь в современной космологии, поэтому лучше уточнять у экспертов, но, мне кажется, на сегодняшний день ученые говорят о конечной Вселенной. Она огромна, но конечна. Если ты выбрал наугад две точки в нашей Вселенной, то между ними существует путь, измеряющийся конечной длиной в километрах, и его можно преодолеть за конкретное время.

Третьим условием служит тонкое свойство нашего мира, о котором рассказывают путем аналогий с осязаемыми объектами, — односвязность. Рассмотрим поверхность мяча. По аналогии с нашим миром поверхность мяча можно назвать гладким двумерным многообразием. Это значит, что в каждой точке на поверхности мяча я могу провести только две прямые, которые будут друг другу перпендикулярны, поэтому третье направление будет покидать эту поверхность. Для плоского разумного существа, которое может жить на поверхности мяча, третье направление будет неосязаемым. Это существо сказало бы, что его мир двумерный, потому что есть две прямые, перпендикулярные друг другу, которые оно в каждой точке может нарисовать. Поверхность мяча обладает всеми остальными свойствами. Поверхность мяча устроена одинаково для любой точки, и она конечна.

Теперь разберемся с односвязностью. Представим, что на поверхность мяча я бросил кусок нитки. Неважно, где она находится — по диаметру или просто в окрестности, даже если она с самопересечениями. Я всегда могу стянуть ее в одну точку или убрать с мяча. Если рассмотреть поверхность бублика, в математике — тор. Все предыдущее верно и про него тоже. Он конечен, и его поверхность устроена одинаково для любой точки. Если на этом двумерном бублике будет жить очень маленький организм, то он не заметит изогнутости, и для него это будет похоже на сферу. Изогнутости — артефакт того, что бублик вложен в наш трехмерный мир. В четырехмерном мире он мог быть неизогнутым. Он бы имел другие свойства, но все равно был бы двумерным. Бублик отличается от сферы тем, что вокруг него можно через дырочку завязать нитку. Эту нитку, как ее ни шевели, снять с бублика невозможно. Я могу взять за эту веревочку, вот так поднять и подержать бублик. Это называется «неодносвязность». Существуют нитки, которые снять нельзя. На сфере таких ниток нет, а на бублике есть.

Обратимся к истории вопроса. Эту идею о поверхности разработал Леонард Эйлер. Он первый показал, как одной математической формулой отличить поверхность мяча от поверхности бублика, поэтому его считают основателем топологии. Он рисовал на сфере любой многогранник и считал количество вершин, ребер и граней. И В-Р+Г всегда равно 2. Если сделать то же самое на поверхности бублика, то В-Р+Г равно 0. В — количество вершин на картинке, Р — количество ребер на картинке, а Г — количество граней на картинке. Это инвариант. Какую бы картинку ты ни нарисовал, это число всегда будет одинаковым на сфере и всегда будет равно 2, всегда одинаковым на торе и всегда равно 0. Это доказательство того, что эти две поверхности не могут быть перетянуты друг в друга без разрывов и склеивания. Если перетянуть эти фигуры друг в друга, тогда в процессе непрерывной перетяжки у нас же не может меняться число вершин, ребер и граней. Неизменное число граней — противоречие.

Для многих остается непонятным, зачем сравнивать фигуры, которые очевидно различаются. Я не знаю, что отвечал Леонард Эйлер, но я отвечу, что нам это очевидно в двумерной ситуации, а в трехмерной, четырехмерной и других это абсолютно неочевидно. Если мы хотим представить фигуру, похожую на трехмерный тор, то нам необходимо развивать в себе топологическую интуицию, а без этого утверждать нельзя. Если мы хотим доказать очевидное без топологической интуиции, нам необходимы строгие математические формулы, которые будут работать там, где мы не видим. В этом и был вопрос гипотезы Пуанкаре. Со времен Эйлера было понятно, а затем и доказано, что существует семейство двумерных поверхностей. Дискретное семейство, которое начинается со сферы и продолжается бубликами с дырочками. Потом из двух бубликов создается кренделек с двумя дырками. Затем еще одну такую подрисовать.

Это полная классификация двумерных конечных поверхностей — компактных двумерных многообразий. Если наложить дополнительное условие односвязности — веревочку, которую мы завяжем, всегда можно снять, — то уйдут бублики и крендельки, потому что с них нитку нельзя снять. Остается только сфера, поэтому здесь применяется гипотеза Пуанкаре — математическая гипотеза о том, что любое двумерное, ориентируемое, компактное многообразие является сферой. Для трехмерных поверхностей гипотеза Пуанкаре идентична: любое трехмерное многообразие компактное, односвязное обязано быть трехмерной сферой, которая похожа на четырехмерный мяч. Существует непрерывное перетаскивание этой поверхности в множество, без склеиваний и разрывов. Оно задается одним уравнением: x2+y2+z2+t2=1 в четырехмерном пространстве.

Поверить в очевидность всех условий на примере нашей Вселенной легко, не считая односвязности. Разберемся с односвязностью с помощью космического корабля с веревкой, который запустили в долгий полет, а затем вернули в исходную точку. Мы завяжем нитку от корабля, но потом сможем ее стянуть. У нас нет полной уверенности, что корабль не обернул невидимую четырехмерную дыру, но если мы поверим во все условия, то выяснится, что мы живем на поверхности трехмерной сферы — на границе четырехмерного шара. Живем на простом уравнении. Эйлера считают основоположником идей о топологии, а Пуанкаре развил эти идеи до состояния точной науки, которая находится в сердце всех математических знаний. Если математика считается сердцем всех естественно-научных знаний, то ядром для математики служит топология. Гипотеза Пуанкаре стала сложнейшей теоремой, которую доказали только через 102 года, после того как в 1900 году ее сформулировал Анри Пуанкаре. В 2002 году российский ученый Григорий Перельман полностью доказал ее. Доказательство чрезвычайно сложное, не случайно это относят именно к топологии. Такой рассказ о гипотезе Пуанкаре, а ныне о теореме Пуанкаре — Перельмана.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *