Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.
Синус, косинус, тангенс и котангенс. Определения
Зачем разделять понятия синуса, косинуса, тангенса и котангенса?
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Что такое синус?
Синус угла (sin α) — это отношение противолежащего этому углу катета к гипотенузе.
Что такое косинус?
Косинус угла (cosα) — это отношение прилежащего катета к гипотенузе.
Что такое тангенс?
Тангенс угла (tg α) — это отношение противолежащего катета к прилежащему.
Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
Синус и косинус можно представить через экспоненту (экспоненциальная функция).
Приведем иллюстрацию.
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.
Что и почему важно и принято помнить в ходе такого нахождения?
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг — вся числовая прямая, то есть эти функции могут принимать любые значения.
Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором — теорему косинусов.
Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы.
Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).
Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.
Угол поворота
Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞.
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.
Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y).
Синус угла поворота α — это ордината точки A1(x , y). sin α=y
Косинус угла поворота α — это абсцисса точки A1(x , y). cos α=икс
Тангенс угла поворота α — это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx
Котанг угла поворота α — это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy
Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.
Простое правило: синус и косинус определены для любых углов α.
Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)
Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)
При решении практических примеров не говорят «синус угла поворота α». Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10π равен синусу угла поворота величиной 10π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Начальная точка на окружности — точка A c координатами (1, 0).
Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.
Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t=y
Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t=x
Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).
Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента.
Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.
Синус, косинус, тангенс и котангенс — основные тригонометрические функции.
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α=A1HOA1=y1=y
Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Синус, косинус, тангенс и котангенс: основные формулы
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Тригонометрия в прямоугольном треугольнике
- Тригонометрический круг
- Основное тригонометрическое тождество
- Таблица значений тригонометрических функций
- Градусы и радианы
- Формулы приведения
- Теорема синусов
- Расширенная теорема синусов
- Теорема косинусов
- Тригонометрические уравнения (10-11 класс)
- Примеры решений заданий из ОГЭ
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:
sin ∠ A = C B A B
cos ∠ A = A C A B
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
sin ∠ B = A C A B
cos ∠ B = B C A B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )
На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.
Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .
Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).
Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.
Рассмотрим прямоугольный треугольник AOB:
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Поскольку O C A B – прямоугольник, A B = C O .
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.
Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x. (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.
Координата по оси x – косинус угла, координата по оси y – синус угла.
Пример:
cos 150 ° = − 3 2
sin 150 ° = 1 2
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.
Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
0° | 30° | 45° | 60° | 90° | |
sinα | 0 | 12 | 22 | 32 | 1 |
cosα | 1 | 32 | 22 | 12 | 0 |
tgα | 0 | 33 | 1 | 3 | нет |
ctgα | нет | 3 | 1 | 33 | 0 |
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β:
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Скачать домашнее задание к уроку 1.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Что такое синус, косинус, тангенс, котангенс
18 мая 2022
Сегодня мы узнаем, что такое синус, косинус, тангенс и котангенс. Это первый и самый важный урок по тригонометрии на всём сайте.
Содержание:
- Ключевые определения: синус, косинус, тангенс, котангенс.
- Почему эти значения зависят только от углов?
- Стандартные углы: 30°, 45°, 60°.
- Простейшие свойства синуса, косинуса, тангенса, котангенса.
- Тригонометрия на координатной сетке.
Никаких сложных формул и длинных решений. Всё расписано максимально подробно. Изучите этот урок — и никаких проблем с тригонометрией не будет. Погнали!
1. Ключевые определения
Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:
Мы видим, что острый угол $alpha $ образован гипотенузой $c$ и катетом $b$. Такой катет будем называть прилежащим. А катет $a$, который не участвует в формировании угла $alpha $, назовём противолежащим:
Это общепринятые названия: как только в прямоугольном треугольнике отмечен острый угол, для него немедленно можно указать прилежащий катет и противолежащий. И тут мы переходим к ключевым определениям.
1.1. Синус, косинус, тангенс, котангенс
Итак, пусть дан прямоугольный треугольник с острым углом $alpha $.
Тогда:
Определение 1. Синус угла $alpha $ — это отношение противолежащего катета к гипотенузе:
[sin alpha =frac{text{противолежащий катет}}{text{гипотенуза}}=frac{a}{c}]
Определение 2. Косинус угла $alpha $ — это отношение прилежащего катета к гипотенузе:
[cos alpha =frac{text{прилежащий катет}}{text{гипотенуза}}=frac{b}{c}]
Определение 3. Тангенс угла $alpha $ — это отношение противолежащего катета к прилежащему:
[operatorname{tg}alpha =frac{text{противолежащий катет}}{text{прилежащий катет}}=frac{a}{b}]
Определение 3. Котангенс угла $alpha $ — это отношение прилежащего катета к противолежащему:
[operatorname{ctg}alpha =frac{text{прилежащий катет}}{text{противолежащий катет}}=frac{b}{a}]
Вот так всё просто! Берём один катет, делим его на гипотенузы (или на другой катет) — и получаем выражение для синуса, косинуса, тангенса и котангенса. Все эти выражения называются тригонометрическими («тригонометрия» = «треугольники измеряю»).
Рассмотрим пару примеров.
Задача 1. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.
Решение. Это классический прямоугольный треугольник с катетами 3 и 4 и гипотенузой 5. Угол $alpha $ (он же — угол $A$ или угол $BAC$) образован прилежащим катетом $AB=3$гипотенузой $AC=5$. Следовательно катет $BC=4$ — противолежащий.
Имеем:
[begin{align}sin alpha& =frac{BC}{AC}=frac{5}{4} \ cos alpha& =frac{AB}{AC}=frac{3}{5} \ operatorname{tg}alpha& =frac{BC}{AB}=frac{4}{3} end{align}]
Далеко не всегда будут получаться такие красивые ответы. Чаще они будут содержать корни — это следствие теоремы Пифагора. Но важно понимать: как только мы находим длины катетов и гипотенузу, мы сразу можем найти и синусы, косинусы, тангенсы.
Далее в примерах мы не будем считать котангенсы, потому что из формулы котангенса очевидно, что они легко выражаются через тангенсы:
[operatorname{ctg}alpha =frac{1}{operatorname{tg}alpha }]
Но об этом чуть позже.
Задача 2. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.
Это равнобедренный прямоугольный треугольник с катетами $AB=BC=1$. Найдём гипотенузу по теореме Пифагора:
[begin{align}{{ AC}^{2}} & ={{AB}^{2}}+{{BC}^{2}}=1+1=2 \ AC & =sqrt{2} \ end{align}]
Теперь найдём синус, косинус и тангенс:
[begin{align}sin alpha &=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos alpha &=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}alpha&=frac{BC}{AB}=frac{1}{1}=1 end{align}]
Простое правило, чтобы не запутаться, где прилежащий катет, а где противолежащий. Просто помните: приставка «ко» означает «вместе», «сообща». Поэтому «косинус» — это «катет, лежащий рядом, к гипотенузе», «котангенс» — это «катет, лежащий рядом, к противолежащему». И никак иначе.:)
1.2. Задачи для тренировки
Перед тем как переходить к следующей части урока, предлагаю 4 примера для тренировки.
Задача 3. ►
Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
Решение.
[begin{align}sin alpha &=frac{5}{13} \ cos alpha &=frac{12}{13} \ operatorname{tg}alpha &=frac{5}{12} \ end{align}]
Задача 4. ►
Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
Решение.
[begin{align}sin alpha &=frac{8}{17} \ cos alpha &=frac{15}{17} \ operatorname{tg}alpha &=frac{8}{15} \ end{align}]
Задача 5. ►
Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
Прилежащий катет по теореме Пифагора:
[begin{align}{{l}^{2}}&={{3}^{2}}-{{1}^{2}}=9-1=8 \ l&=sqrt{8}=2sqrt{2} \ end{align}]
Синус, косинус и тангенс:
[begin{align}sin alpha&=frac{1}{3} \ cos alpha&=frac{2sqrt{2}}{3} \ operatorname{tg}alpha&=frac{1}{2sqrt{2}}=frac{sqrt{2}}{4} \ end{align}]
Задача 6. ►
Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
Прилежащий катет по теореме Пифагора:
[begin{align}{{l}^{2}} &={{2}^{2}}-{{1}^{2}}=4-1=3 \ l &=sqrt{3} \ end{align}]
Синус, косинус и тангенс:
[begin{align}sin alpha&=frac{1}{2} \ cos alpha&=frac{sqrt{3}}{2} \ operatorname{tg}alpha&=frac{1}{sqrt{3}}=frac{sqrt{3}}{3} \ end{align}]
Как видим, считать синусы, косинусы и тангенсы совсем несложно. Перейдём теперь к принципиально важному вопросу: а зачем вообще всё это нужно?
2. Теорема о единственности
Ключевая идея: синус, косинус, тангенс и котангенс зависят только от величины угла $alpha $ и никак не зависят от прямоугольного треугольника, в котором идут вычисления.
Такого не произойдёт. Потому что есть теорема о единственности.
2.1. Формулировка теоремы
Теорема. Значение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике определяются только величиной этого угла и никак не зависят от самого треугольника.
2.2. Доказательство
Рассмотрим произвольный острый угол $alpha $. Для удобства обозначим его вершину буквой $A$:
А затем впишем в него два произвольных прямоугольных треугольника — $ABC$ и $AMN$. Любым удобным способом. Например, можно вписать эти треугольники вот так:
А можно и вот так — это не имеет никакого значения:
Рассмотрим треугольники $ABC$ и $AMN$. Угол $A$ у них общий; углы [angle ABC=angle AMN=90{}^circ ] по условию. Следовательно, треугольники $ABC$ и $AMN$ подобны по двум углам:
[Delta ABCsim Delta AMN]
Из подобия треугольников следует двойное равенство
[frac{AB}{AM}=frac{BC}{MN}=frac{AC}{AN}]
Выпишем второе равенство — получим пропорцию
[frac{BC}{MN}=frac{AC}{AN}]
Попробуем выразить $sin alpha $. Вспомним основное свойство пропорции: произведение крайних членов равно произведению средних. Поэтому
[BCcdot AN=MNcdot AC]
Разделим обе части равенства на длину каждой гипотенузы — $AN$ и $AC$:
[begin{align}frac{BCcdot AN}{ANcdot AC} &=frac{MNcdot AC}{ANcdot AC} \ frac{BC}{AC} &=frac{MN}{AN} end{align}]
Однако по определению синуса имеем:
[begin{align}sin BAC &=frac{BC}{AC} \ sin MAN &=frac{MN}{AN} \ end{align}]
Получается, что $sin BAC=sin MAN$. Другими словами, вне зависимости от выбора треугольника для данного угла $alpha $ мы всегда будем получать одно и то же значение $sin alpha $.
То же самое касается и $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ — они зависят лишь от градусной меры угла $alpha $ и никак не зависят от конкретного прямоугольного треугольника, в котором они находятся. Теорема доказана.
3. Стандартные углы
Итак, значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ однозначно определяются величиной угла $alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.
Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:
- Для большинства углов $alpha $ нельзя найти точные значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
- Верно и обратное: для большинства «красивых» $sin alpha $, $cos alpha $ и т.д. нельзя подобрать подходящий угол $alpha $.
Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.
3.1. Три стандартных угла
Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:
[begin{array}{c|ccc} alpha& 30{}^circ& 45{}^circ & 60{}^circ \ hlinesin alpha & frac{1}{2} & frac{sqrt{2}}{2} & frac{sqrt{3}}{2} \ cos alpha & frac{sqrt{3}}{2} & frac{sqrt{2}}{2} & frac{1}{2} \ operatorname{tg}alpha& frac{sqrt{3}}{3} & 1 & sqrt{3} \ end{array}]
Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $alpha =45{}^circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:
Поскольку в равнобедренном треугольнике $angle A=angle B=45{}^circ $, получим:
[begin{align}sin 45{}^circ &=sin A=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos 45{}^circ &=sin A=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}45{}^circ&=sin A=frac{BC}{AB}=frac{1}{1}=1 end{align}]
Это именно те значения, которые указаны в таблице!
Теперь разберёмся с углами $alpha =30{}^circ $ и $alpha =60{}^circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:
Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $angle ABH=angle CBH=30{}^circ $.
Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=sqrt{3}$. Нанесём все данные на чертёж:
Разберёмся с углом 60°:
[begin{align} sin{60}^circ &=sin A=frac{BH}{AB}=frac{sqrt{3}}{2} \ cos{60}^circ&=cos A=frac{AH}{AB}=frac{1}{2} \ operatorname{tg}{60}^circ&=operatorname{tg}A=frac{BH}{AH}=sqrt{3} \ end{align}]
И с углом 30°:
[begin{align} sin{30}^circ &=sin ABH=frac{AH}{AB} =frac{1}{2} \ cos{30}^circ &=cos ABH=frac{BH}{AB} =frac{sqrt{3}}{2} \ operatorname{tg}{30}^circ &=operatorname{tg} ABH=frac{AH}{BH} =frac{1}{sqrt{3}} =frac{sqrt{3}}{3} \ end{align}]
Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!
Возникает вопрос: как быть с другими углами? Например, можно ли найти $sin {50}^circ $? Или, быть может, $cos {10}^circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.
Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?
3.2. Что с другими углами?
Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:
Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $alpha $:
[sin alpha =sin A=frac{BC}{AB}=frac{3}{5}=0,6]
Итак, мы знаем синус. Внимание, вопрос: каким должен быть угол $alpha $, чтобы $sin alpha =0,6$? Сколько градусов должно быть в угле $alpha $? Ответ: неизвестно.:)
Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $alpha $, чтобы $sin alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.
Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:
- Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
- Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.
Ещё раз:
Мы можем посчитать лишь синус, косинус и тангенс для трёх табличных углов.
Например, $sin 30{}^circ $, $cos 45{}^circ $, $operatorname{tg}60{}^circ $ и т.д. А всякие $sin 15{}^circ $, $cos 25{}^circ $ или $operatorname{tg}89,5{}^circ $ — не сможем. По крайней мере пока.:)
И наоборот:
Зная $sin alpha $, $cos alpha $ или $operatorname{tg}alpha $, мы сможем назвать точный угол $alpha $ только в том случае, если все эти синусы, косинусы и тангенсы — среди табличных значений.
Например, мы точно знаем, что если $sin alpha =frac{sqrt{2}}{2}$, то $alpha =45{}^circ $. Но когда $sin alpha =0,6$, мы уже не можем назвать угол $alpha $ (хотя всегда можем построить такой угол).
С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.
4. Свойства синуса, косинуса, тангенса
Мы разберём три ключевых свойства:
- Связь между синусом, косинусом и тангенсом.
- Связь между острыми углами прямоугольного треугольника.
- Основное тригонометрическое тождество.
Свойствам 2 и 3 далее в курсе будут посвящены отдельные уроки. Но основные идеи полезно взять на вооружение уже сейчас.
4.1. Связь между синусом, косинусом и тангенсом
Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:
Выразим синус, косинус:
[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]
А теперь выразим тангенс и заметим, что
[operatorname{tg}alpha =frac{a}{b}=frac{a}{c}cdot frac{c}{b}=frac{sin alpha }{cos alpha }]
Точно так же можно выразить и котангенс:
[operatorname{ctg}alpha =frac{b}{a}=frac{b}{c}cdot frac{c}{a}=frac{cos alpha }{sin alpha }]
Более того, сам тангенс и котангенс тоже связаны:
[operatorname{tg}alpha cdot operatorname{ctg}alpha =frac{a}{b}cdot frac{b}{a}=1]
Мы получили три важнейших тригонометрических формулы:
Основные формулы тригонометрии:
[operatorname{tg}alpha =frac{sin alpha }{cos alpha };quad operatorname{ctg}alpha =frac{cos alpha }{sin alpha };quad operatorname{tg}alpha cdot operatorname{ctg}alpha =1]
Эти формулы нужно знать наизусть. И понимать, откуда они берутся.
4.2. Связь между острыми углами
Рассмотрим прямоугольный треугольник $ABC$, где $angle C=90{}^circ $. Пусть градусная мера $angle A=alpha $ градусов:
Мы помним, что сумма острых углов прямоугольного треугольника равна 90°. Поэтому если $angle A=alpha $, то угол $angle B=90{}^circ -alpha $. Но тогда:
[sin alpha =sin A=frac{BC}{AB}=cos B=cos left( 90{}^circ -alpha right)]
То же самое и с косинусами:
[cos alpha =cos A=frac{AC}{AB}=sin B=sin left( 90{}^circ -alpha right)]
И даже с тангенсами и котангенсами:
[begin{align} operatorname{tg}alpha&=operatorname{tg}A=frac{BC}{AC} =operatorname{ctg}B=operatorname{ctg}left( {90}^circ -alpharight) \ operatorname{ctg}alpha&=operatorname{ctg}A=frac{AC}{BC} = operatorname{tg}B=tgleft( {90}^circ -alpha right) \ end{align}]
Другими словами, если вместо $alpha $ поставить ${90}^circ -alpha $, то исходная тригонометрическая функция поменяется на ко-функцию:
[begin{align}sin left( {90}^circ-alpharight) &=cos alpha \ cos left( {90}^circ-alpharight) &=sin alpha \ operatorname{tg}left( {90}^circ-alpharight) &=operatorname{ctg}alpha\ operatorname{ctg}left( {90}^circ-alpharight) &=operatorname{tg}alphaend{align}]
Но это ещё не всё. Есть гораздо более интересная формула.
4.3. Основное тригонометрическое тождество
Вновь рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:
Запишем выражения для $sin alpha $ и $cos alpha $:
[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]
Далее заметим, что
[begin{align} {{sin }^{2}}alpha +{{cos }^{2}}alpha&={{left( frac{a}{c} right)}^{2}}+{{left( frac{b}{c} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{c}^{2}}} +frac{{{b}^{2}}}{{{c}^{2}}}= \ & =frac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}} end{align}]
В числителе можем применить теорему Пифагора: ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, поэтому
[{{sin }^{2}}alpha +{{cos }^{2}}alpha =frac{{{c}^{2}}}{{{c}^{2}}}=1]
Правая часть этой формулы вообще не зависит от угла $alpha $.
Основное тригонометрическое тождество:
[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]
Это равенство связывает синус и косинус одного и того же угла и верно для всех $alpha $.
С помощью основного тригонометрического тождества можно вычислять косинус, зная синус, и наоборот.
Задача 7. Найдите $18cos alpha $ для острого угла $alpha $, если $sin alpha =frac{sqrt{65}}{9}$.
Решение. Запишем основное тригонометрическое тождество:
[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]
Подставим указанное значение $sin alpha $ и выразим $cos alpha $:
[begin{align}{{left( frac{sqrt{65}}{9} right)}^{2}}+{{cos }^{2}}alpha &=1 \ frac{65}{81}+{{cos }^{2}}alpha &=1 \ {{cos }^{2}}alpha &=frac{16}{81} \ cos alpha&=pm frac{4}{9} end{align}]
Поскольку косинус угла в прямоугольном треугольнике не может быть отрицательным, выбираем вариант $cos alpha ={4}/{9};$. Остаётся сделать финальный шаг:
[18cos alpha =18cdot frac{4}{9}=2cdot 4=8]
Вот и всё! Ответ: 8.
В следующем примере мы уже не будем подробно расписывать каждый шаг. Оформим всё так, как надо оформлять на контрольных и экзаменах.
Задача 8. Найдите $48operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{8}{sqrt{113}}$.
Решение. Найдём $sin alpha $:
[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-{{left( frac{8}{sqrt{113}} right)}^{2}}= \ & =1-frac{64}{113}=frac{49}{113} \ sin alpha&=pm frac{7}{sqrt{113}} end{align}]
Но ${0}^circ lt alpha lt {90}^circ $, поэтому $sin alpha gt 0$. Следовательно
[sin alpha =frac{7}{sqrt{113}}]
Найдём $operatorname{tg}alpha $:
[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{7}{sqrt{113}}cdot frac{sqrt{113}}{8}=frac{7}{8}]
Окончательный ответ:
[48operatorname{tg}alpha =48cdot frac{7}{8}=6cdot 7=42]
Ответ: 42.
Заметка на будущее: замечание о том, что угол $alpha $ острый, весьма существенно. То, как мы сейчас определяем синусы, косинусы и тангенсы (через прямоугольный треугольник), называется геометрической тригонометрией. Её проходят в 8—9 классе.
Но в 10—11 классах появится алгебраическая тригонометрия, где синусы, косинусы и т.д. вполне могут быть отрицательными. И уже не получится просто так избавиться от минуса.
Но всё это будет чуть позже. А сейчас потренируемся.
Задача 9. ►
Найдите $52cos alpha $ для острого угла $alpha $, если $sin alpha =frac{5}{13}$.
Решение. Найдём $cos alpha $:
[begin{align}{{cos }^{2}}alpha &=1-{{sin }^{2}}alpha = \ &=1-frac{25}{169}=frac{144}{169} \ cos alpha&=pm frac{12}{13} end{align}]
Поскольку $cos alpha gt 0$ для острых $alpha $, выбираем $cos alpha ={12}/{13};$. Итого
[52cos alpha =52cdot frac{12}{13}=48]
Ответ: 48.
Задача 10. ►
Найдите $1+2operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{1}{sqrt{26}}$.
Решение. Найдём $sin alpha $:
[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-frac{1}{26}=frac{25}{26} \ sin alpha&=pm frac{5}{sqrt{26}} end{align}]
Поскольку $sin alpha gt 0$ для острых $alpha $, выбираем
[sin alpha =frac{5}{sqrt{26}}]
Считаем $operatorname{tg}alpha $:
[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{5}{sqrt{26}}cdot frac{sqrt{26}}{1}=5]
Откуда
[1+2operatorname{tg}alpha =1+2cdot 5=11]
Ответ: 11.
5. Тригонометрия на координатной сетке
Задачи, которые мы сейчас разберём, вполне могут встретиться в ОГЭ и даже ЕГЭ. Часто в них нет прямоугольного треугольника — есть лишь угол, в который этот треугольник предлагается вписать.
Для решения задач на координатной сетке достаточно посмотреть, через какие узлы сетки проходят интересующие нас лучи. И понять, какие из этих узлов имеет смысл соединить дополнительными построениями.
Звучит страшно, но на практике всё легко.:)
Задача 11. Найдите тангенс угла $ABC$, изображённого на координатной сетке:
Решение. Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ на луч $BC$.
Треугольник $BAH$ — прямоугольный, причём угол $ABC$ — один из его острых углов. Поэтому
[operatorname{tg}ABC=frac{AH}{BH}=frac{3}{4}=0,75]
Это и есть искомый тангенс.
Ответ: 0,75.
Ещё раз: важно, чтобы основание перпендикуляра попадало в узел сетки. Иначе нахождение длины катетов резко усложняется. Попробуйте сами:
Задача 12. ►
Найдите тангенс угла $ABC$, изображённого на координатной сетке:
Решение.
Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ к лучу $BC$.
Треугольник $BAH$ — прямоугольный с острым углом $ABC$. Поэтому
[operatorname{tg}ABC=frac{AH}{BH}=frac{2}{4}=frac{1}{2}]
Ответ: 0,5.
Разумеется, это были совсем простые задачи. Потому что один из лучей был параллелен линиям сетки.
Куда интереснее (и полезнее) рассмотреть ситуации, где лучи направлены под углом к сетке. Суть та же: ищем и соединяем узлы на лучах. Но тут уже нужна наблюдательность.
Задача 13. Найдите тангенс угла $MNK$, изображённого на координатной сетке:
Решение. Луч $KN$ содержит лишь две точки в узлах координатной сетки — собственно, $K$ и $N$. Понятно, что если продолжить луч за точку $K$, мы найдём ещё много таких точек, но будем решать задачу с тем, что есть.
Заметим, что прямая $MN$ наклонена к линиям сетки под углом 45° и образует диагонали квадратов. Это значит, что перпендикуляр к ней тоже будет наклонён под углом 45°.
Дополнительное построение: отрезок $KH$ — диагональ одного из квадратов сетки.
Очевидно, что угол $NHK$ прямой, поэтому треугольник $KHN$ прямоугольный и содержит искомый острый угол $MNK$. Находим тангенс:
[operatorname{tg}MNK=frac{HK}{HN}=frac{sqrt{2}}{2sqrt{2}}=frac{1}{2}=0,5]
Здесь мы предположили, что сторона квадрата сетки равна 1. Но с тем же успехом можно считать, что сторона квадрата $a$:
[operatorname{tg}MNK=frac{HK}{HN}=frac{asqrt{2}}{2asqrt{2}}=frac{1}{2}=0,5]
Ответ: 0,5.
Подобные задачи считаются довольно сложными. По статистике большинство выпускников 9 классов не способны их решать. Но вы-то теперь точно справитесь. Попробуйте:
Задача 14. ►
Найдите тангенс угла $DEF$, изображённого на координатной сетке:
Решение.
Дополнительное построение: отрезок $DH$.
Очевидно, $EH=DH$, угол $EHD$ прямой. Следовательно, треугольник $EDH$ — прямоугольный и равнобедренный. Поэтому $operatorname{tg}DEF=1$.
Либо можно посчитать «напролом», полагая, что сторона квадрата сетки равна $a$:
[operatorname{tg}DEF=frac{asqrt{10}}{asqrt{10}}=1]
Ответ: 1.
Вообще, поиск «правильных» узлов на координатной сетке — это своего рода искусство. И если углубляться в эту тему, то можно быстро выйти на «полуолимпиадные» задачи.
К тому же не существует «самого правильного» дополнительного построения. Задачу на координатной сетке всегда можно решить множеством различных способов. Так, в последнем примере можно было провести перпендикуляр вот так:
И даже так (хотя вряд ли этот способ можно назвать рациональным):
Во всех случаях ответ будет один и тот же. Поэтому не бойтесь экспериментировать. И переходите к следующему уроку — к действительно важным и полезным свойствам синусов, косинусов, тангенсов и котангенсов.:)
Смотрите также:
- Радианная и градусная мера угла
- Как быстро запомнить таблицу синусов и косинусов
- Сложные логарифмические неравенства
- Сложные выражения с дробями. Порядок действий
- Задача B5: площадь фигур с вершиной в начале координат
- Обход точек в стереометрии — 2
subjects:mathematics:тригонометрические_выражения_и_формулы
Содержание
Тригонометрические выражения и тригонометрические формулы
Отметим на координатной оси Ох справа от точки О точку А и построим окружность с центром в точке О и радиусом ОА (так называемым начальным радиусом).
Окружность с центром в точке О и радиусом ОА
Рис.1
Пусть при повороте на угол a против часовой стрелки начальный радиус ОА переходит в радиус ОВ.
Тогда:
-
Синусом (sin α) угла α называется отношение ординаты точки В к длине радиуса.
-
Косинусом (cos α) угла α называется отношение абсциссы точки В к длине радиуса.
-
Тангенсом (tg α) угла α называется отношение ординаты точки В к ее абсциссе.
-
Котангенсом (ctg α) угла α называется отношение абсциссы точки В к ее ординате.
-
Секанс определяется как sec α = 1/(cos α)
-
Косеканс определяется как cosec α = 1/(sin α)
-
В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x
Если координаты точки В равны x и y, то:
$$sin{alpha} = frac{y}{R};;; cos{alpha} = frac{x}{R};;; {rm tg}, alpha = frac{y}{x};;; {rm ctg}, alpha = frac{x}{y}$$
Таблица значений sin α, cos α, tg α, ctg α
Приведем таблицу значений тригонометрических функций некоторых углов (прочерк сделан, когда выражение не имеет смысла):
Таблица значений sin α, cos α, tg α, ctg α | ||||||||
0º | 30º | 45º | 60º | 90º | 180º | 270º | 360º | |
---|---|---|---|---|---|---|---|---|
0 рад | $frac{pi}{6}$ | $frac{pi}{4}$ | $frac{pi}{3}$ | $frac{pi}{2}$ | $pi$ | $frac{3pi}{2}$ | $2pi$ | |
$sin alpha$ | 0 | $frac{1}{2}$ | $frac{sqrt{2}}{2}$ | $frac{sqrt{3}}{2}$ | 1 | 0 | -1 | 0 |
$cos alpha$ | 1 | $frac{sqrt{3}}{2}$ | $frac{sqrt{2}}{2}$ | $frac{1}{2}$ | 0 | -1 | 0 | 1 |
$textrm{tg}, alpha$ | 0 | $frac{1}{sqrt{3}}$ | 1 | $sqrt{3}$ | — | 0 | — | 0 |
$textrm{ctg}, alpha$ | — | $sqrt{3}$ | 1 | $frac{1}{sqrt{3}}$ | 0 | — | 0 | — |
Свойства sin, cos, tg и ctg
Свойства синуса (sin), косинуса (cos), тангенса(tg) и котангенса(ctg):
-
Определение знака
-
Если α-угол I или II координатной четверти, то sin α > 0;
-
Если α-угол III или IV координатной четверти, то sin α < 0;
-
Если α-угол I или IV координатной четверти, то cos α > 0;
-
Если α-угол II или III координатной четверти, то cos α < 0;
-
Если α-угол I или III координатной четверти, то tg α > 0 и ctg α > 0;
-
Если α-угол II или IV координатной четверти, то tg α < 0 и ctg α < 0.
-
-
Синус, тангенс и котангенс — нечетные функции; косинус — четная функция.
-
Для чётной функции справедливо равенство: y(-x) = y(x). Примеры чётных функций: y = cos(x), y = x2.
-
Для НЕчётной функции справедливо равенство: y(-x) = -y(x). Примеры НЕчётных функций: y = sin(x), y = x.
-
-
При изменении угла на целое число оборотов значения тригонометрических функций не меняются.
-
У sin α и cos α период – $2pi$ или 360°.
-
У tg α и ctg α – $pi$.
-
1 радиан — это мера центрального угла, которому соответствует длина дуги, равная длине радиуса окружности.
Связь радианов с градусами: $1° =frac{pi}{180}text{рад; 1 рад }=frac{180°}{pi}$.
Основные тригонометрические тождества
Формулы приведения
X | $frac{pi}{2}-alpha$ | $frac{pi}{2}+alpha$ | $pi-alpha$ | $pi+alpha$ | $frac{3pi}{2}-alpha$ | $frac{3pi}{2}+alpha$ | $2pi-alpha$ | $2pi+alpha$ |
---|---|---|---|---|---|---|---|---|
sin x | cos α | cos α | sin α | -sin α | -cos α | -cos α | -sin α | sin α |
cos x | sin α | -sin α | -cos α | -cos α | -sin α | sin α | cos α | cos α |
tg x | ctg α | -ctg α | -tg α | tg α | ctg α | -ctg α | -tg α | tg α |
ctg x | tg α | -tg α | -ctg α | ctg α | tg α | -tg α | -ctg α | ctg α |
Формулы сложения
Формулы двойного угла
Формулы двойного угла или двойного аргумента:
Формулы половинного аргумента
Формулы половинного аргумента (для sin и cos — формулы понижения степени):
Формулы суммы и разности
Формулы произведения
Соотношения между sin x, cos x и tg(x/2)
Один из способов использования: свести всё к tg(x/2) и путём замены получить обычное алгебраическое выражение.
Простейшие тригонометрические уравнения
Дополнительно
· Последние изменения: 2021/03/24 18:37 —
¶
В данном материале, мы изучим основное определение тригонометрии, какие свойства ей характерны, применение в математике, приведем примеры решения уравнений.
Определение
Тригонометрия — это раздел алгебры, в котором изучаются тригонометрические функции и их применение.
В математике применяются основные определения, связанные с тригонометрией, а именно:
- синус — соотношение стороны противолежащего катета к стороне гипотенузы, (sin);
- косинус — это прилежащая сторона катет к гипотенузе, обозначается как (cos);
- тангенс — отношение стороны противолежащего катета к стороне прилежащего, (tg);
- котангенс — отношение прилежащей стороны катета к противолежащей (это значение, обратное значению тангенса), обозначается как (ctg).
В науке чаще всего применяются два основных вида функций: прямые и косвенные, реже обратные функции.
Стоит выделить главные тригонометрические тождества, существующие в математике:
[ sin ^{2 alpha}+cos ^{2} alpha=1; ]
[ tan alpha=frac{sin alpha}{cos alpha}; ]
[ cot alpha=frac{cos alpha}{sin alpha}; ]
[ tan alpha cdot cot alpha=1; ]
[tan ^{2} alpha+1=frac{1}{cos ^{2} alpha};]
[cot ^{2} alpha+1=frac{1}{sin ^{2} alpha}.]
Применим основные формулы тригонометрии, решая задачи.
Пример:
Известно: cosα=0.8;
Необходимо определить: косинус, тангенс, котангенс, соответствующего угла a.
Решение:
Для определения значения косинуса в квадрате, возводим число 0,8 в квадрат и вычисляем синус. Полученное значение подставляем в формулу и можем определить тангенс угла 0,8. Таким же методом, вычисляем котангенс.
Решение довольно простое и особых сложней не вызывает.
Основные тригонометрические тождества формул приведения
Формулы помогают, преобразовать основные тождества и перейти к вычислению углов в пределах 90 градусов. Это очень удобно, не только в алгебре, но и во всей математике.
Существует два основных способа, использования формул приведения:
- Если угол можно записать как (π/2 ±α) или (3*π/2 ±α), то название функции меняется с косинуса на определение синус, тангенс, в свою очередь на котангенс, либо наоборот. Если же угол можно представить в виде (π±α) или (2*π±α), то название функции не меняется.
- Обозначение приведенного уравнения не изменяется. Если изначально функция была со знаком «+», тогда и приведенная функция будет со знаком «+», с отрицательным знаком тоже самое.
Формулы приведения, примеры:
При расчетах очень часто возникают трудности при вычислении больших значений степеней. Для этого в тригонометрии, существует такое понятие как понижение значения степени.
Тождества понижения степени, помогают справиться с этой непростой задачей. Они выражают степень sin и cos через sin и cos первой степени, но определенного кратного угла. Поэтому, тригонометрические уравнения снижают степень первоначальных функций с определенной до первой степени, но при этом повышают кратность угла от до n.
Тригонометрические формулы для косинуса и синуса понижения степени, записываются в следующем виде:
После преобразования основных формул понижения получаем их общий вид. Рассмотрим на примерах ниже.
Для четных значений уравнения:
Для нечетных значений уравнения:
Применение основных тригонометрических формул для решения уравнений
Тригонометрические тождества можно выражать различным способом, для облегчения решения уравнения.
Рассмотрим характеристики тригонометрических функций для косинуса, синуса, тангенса и котангенса.
а) Сложение и вычитание тригонометрических функций.
Сложение и вычитание тригонометрических функций можно представить как — произведение. Преобразовать на множители косинус или синус, и тем самым упростить процесс вычисления.
б) Произведение тригонометрических функций.
Произведение функций можно вычислить путем сложения и вычитания тождеств.
В свою очередь произведение тригонометрических функций, позволяет вычислить сумму. Эти два действия являются противоположными по отношению к друг другу.
в) Тригонометрические формулы сложения.
При их применении можно сложение и вычитание углов выразить через тригонометрические функции заданных значений угла.
Преобразовав формулы сложения, мы получим тригонометрические уравнения угла.
Нет времени решать самому?
Наши эксперты помогут!
Формулы кратности значения угла
Формулы угла, определяющие половину значения (половинного угла):
Универсальное использование тригонометрических функций
Все изученные математические уравнения в тригонометрии — синус, косинус, тангенс и котангенс — имеют свойство выражаться через тангенс (tg) половинного угла.
Тригонометрические функции имеют характерные особенности. Они способны преобразовывать основные уравнения и тем самым выражать различные функции. Понижать степень, для удобства расчета и другие полезные действия
Содержание:
Тригонометрические функции
Изучая материал этого параграфа, вы расширите свои знания о тригонометрических функциях и их свойствах, узнаете, что такое радианная мера угла, какие функции называют периодическими.
Ознакомитесь с формулами, связывающими различные тригонометрические функции, научитесь применять их для выполнения вычислений, упрощения выражений, доказательства тождеств.
Узнаете, какие уравнения называют простейшими тригонометрическими уравнениями; ознакомитесь с формулами корней простейших тригонометрических уравнений.
Радианная мера углов
До сих пор для измерения углов вы использовали градусы или части градуса — минуты и секунды.
Во многих случаях удобно пользоваться другой единицей измерения углов. Ее называют радианом.
Определение. Углом в один радиан называют центральный угол окружности, опирающийся на дугу, длина которой равна радиусу окружности.
На рисунке 8.1 изображен центральный угол АОВ, опирающийся на дугу А В , длина которой равна радиусу окружности. Величина угла АОВ равна одному радиану. Записывают:
Также говорят, что радианная мера дуги АВ равна одному радиану. Записывают:
Радианная мера угла (дуги) не зависит от радиуса окружности. Это утверждение проиллюстрировано на рисунке 8.2.
На рисунке 8.3 изображены окружность радиуса R и дуга MN, длина которой равна Тогда радианная мера угла MON (дуги MN) равна
рад. Вообще, если центральный угол окружности радиуса R опирается на дугу, длина которой равна
то говорят, что радианная мера этого центрального угла равна
рад. Длина полуокружности равна
Следовательно, радианная мера полуокружности равна
рад. Градусная мера полуокружности составляет 180°. Сказанное позволяет установить связь между радианной и градусной мерами, а именно:
(1) Отсюда
Разделив 180 на 3,14 (напомним, что ), можно установить: 1 рад
Если обе части равенства (1) разделить на 180, то получим:
(2)
Из этого равенства легко установить, что, например, 15° = 15—— рад = — рад, 90° = Обычно при записи радианной меры угла обозначение «рад» опускают. Например, записывают:
В таблице приведены градусные и радианные меры часто встречающихся углов:
Используя радианную меру угла, можно получить удобную формулу для вычисления длины дуги окружности. Поскольку центральный угол в 1 рад опирается на дугу, длина которой равна радиусу , то угол в
рад опирается на дугу, длина которой равна
. Если длину дуги, содержащей
рад, обозначить через
, то можно записать:
На координатной плоскости рассмотрим окружность единичного радиуса с центром в начале координат. Такую окружность называют единичной. Пусть точка , начиная движение от точки
, перемещается по единичной окружности против часовой стрелки. В некоторый момент времени она займет положение, при котором
(рис. 8.4). Будем говорить, что точка
получена в результате поворота точки
вокруг начала координат на угол
(на угол 1200)
Пусть теперь точка переместилась по единичной окружности по часовой стрелке и заняла положение, при котором
(рис. 8.5). Будем говорить, что точка
получена в результате поворота точки
вокруг начала координат на угол
.
Вообще, когда рассматривают движение точки по окружности против часовой стрелки (рис. 8.4), то угол поворота считают положительным, а когда по часовой стрелке (рис. 8.5) — то отрицательным.
Рассмотрим еще несколько примеров. Обратимся к рисунку 8.6.
Можно сказать, что точка А получена в результате поворота точки вокруг начала координат на угол
(на угол 90°) или на угол
(на угол -270°). Точка В получена в результате поворота точки
на угол
(на угол 180°) или на угол
(на угол -180°). Точка С получена в результате поворота точки
. на угол
(на угол 270°) или на угол
(на угол -90°).
Если точка , двигаясь по единичной окружности, сделает один полный оборот, то можно сказать, что угол поворота равен
(то есть 360°) или
(то есть -360°).
Если точка сделает полтора оборота против часовой стрелки, то естественно считать, что угол поворота равен
(то есть 540°), если по часовой стрелке — то
(то есть -540°).
Величина угла поворота как в радианах, так и в градусах может выражаться любым действительным числом.
Угол поворота однозначно определяет положение точки на единичной окружности. Однако любому положению точки
на окружности соответствует бесконечно много углов поворота. Например, точке
(рис. 8.7) соответствуют такие углы поворота:
и т.д., а также
и т.д. Заметим, что все эти углы можно получить с помощью формулы
Тригонометрические функции числового аргумента
В 9 классе, вводя определения тригонометрических функций углов от 0° до 180°, мы пользовались единичной полуокружностью. Обобщим эти определения для произвольного угла поворота . Рассмотрим единичную окружность (рис. 9.1).
Определение. Косинусом и синусом угла поворота называют соответственно абсциссу
и ординату у точки
единичной окружности, полученной в результате поворота точки
(1; 0) вокруг начала координат на угол
(рис. 9.1).
Записывают: Точки
, А, В и С (рис. 9.2) имеют соответственно координаты (1; 0), (0; 1), (-1; 0), (0; -1). Эти точки получены в результате поворота точки
. (1; 0) соответственно на углы
Теперь, пользуясь данным определением, можно составить следующую таблицу1:
Пример:
Найдите все углы поворота , при которых: 1) sin
= 0; 2) cos
= 0.
Решение:
1) Ординату, равную нулю, имеют только две точки единичной окружности: и В (рис. 9.2). Эти точки получены в результате поворотов точки
на такие углы:
. Все эти углы можно записать с помощью формулы
, где
. Следовательно, sin
= 0 при
=
, где
2) Абсциссу, равную нулю, имеют только две точки единичной окружности: А и С (рис. 9.2). Эти точки получены в результате поворотов точки на такие углы:
Все эти углы можно записать с помощью формулы
, где
. Следовательно,
при
1 На форзаце 3 приведена таблица значений тригонометрических функций некоторых углов.
Определение. Тангенсом угла поворота а называют отношение синуса этого угла к его косинусу:
Например,
Из определения тангенса следует, что тангенс определен для тех углов поворота , для которых cos
, то есть при
.
Вы знаете, что каждому углу поворота соответствует единственная точка единичной окружности. Следовательно, каждому значению угла
соответствует единственное число, являющееся значением синуса (косинуса, тангенса для
) угла
.
Поэтому зависимость значения синуса (косинуса, тангенса) от величины угла поворота является функциональной.
Функции , соответствующие этим функциональным зависимостям, называют тригонометрическими функциями угла поворота
.
Каждому действительному числу поставим в соответствие угол
рад. Это позволяет рассматривать тригонометрические функции числового аргумента. Например, запись «sin 2» означает «синус угла в 2 радиана». Из определений синуса и косинуса следует, что областью определения функций у = sin X и у = cos х является множество R.
Поскольку абсциссы и ординаты точек единичной окружности принимают все значения от -1 до 1 включительно, то областью значений функций у = sin х и у = cos х является промежуток [-1; 1].
Углам поворота и
, где
, соответствует одна и та же точка единичной окружности, поэтому
Область определения функции состоит из всех действительных чисел, кроме чисел вида
. Областью значений функции
является множество
.
Можно доказать, что справедлива следующая формула:
Пример:
Найдите наибольшее и наименьшее значения выражения .
Решение:
Поскольку , то
. Следовательно, наименьшее значение данного выражения равно -3; выражение принимает его при
. Наибольшее значение данного выражения равно 5; выражение принимает его при
.
Знаки значений тригонометрических функций. Четность и нечетность тригонометрических функций
Пусть точка получена в результате поворота точки
(1; 0) вокруг начала координат на угол
. Если точка Р принадлежит I координатной четверти, то говорят, что
является углом I четверти. Аналогично можно говорить об углах II, III и IV четвертей.
Например, и -300° — углы I четверти,
и -185° — углы II четверти,
и -96° — углы III четверти, 355° и — углы IV четверти. Углы вида
, не относят ни к какой четверти.
Точки, расположенные в I четверти, имеют положительные абсциссу и ординату. Следовательно, если — угол I четверти, то
.
- Если а — угол II четверти, то sin а > 0, cos а < 0.
- Если а — угол III четверти, то sin а < 0, cos а < 0.
- Если а — угол IV четверти, то sin а < 0, cos а > 0.
Знаки значений синуса и косинуса схематически показаны на рисунке 10.1.
Поскольку , то тангенсы углов I и III четвертей являются положительными, а углов II и IV четвертей — отрицательными (рис. 10.2). Пусть точки
получены в результате поворота точки
(1; 0) на углы
и —
соответственно (рис. 10.3).
Для любого угла точки
имеют равные абсциссы и противоположные ординаты. Тогда из определений синуса и косинуса следует, что для любого действительного числа
Это означает, что функция косинус является четной, а функция синус — нечетной.
Область определения функции симметрична относительно начала координат (проверьте это самостоятельно). Кроме того:
Следовательно, функция тангенс является нечетной.
Пример:
Какой знак имеет: 1) sin 280°; 2)tg(-140°)?
Решение:
1) Поскольку угол 280° является углом IV четверти, то sin 280° < 0.
2) Поскольку угол -140° является углом III четверти, то tg(-140°) > 0.
Пример:
Сравните sin 200° и sin (-200°).
Решение:
Поскольку угол 200° — угол III четверти, угол -200° — угол II четверти, то sin 200° < 0, sin (-200°) > 0. Следовательно, sin 200° < sin (-200°).
Пример:
Исследуйте на четность функцию: 1) • 2)
.
Решение:
1) Область определения данной функции, D(f) = , симметрична относительно начала координат.
Имеем:
Следовательно, рассматриваемая функция является четной.
2) Область определения данной функции, , симметрична относительно начала координат. Запишем:
Поскольку ни одно из равенств
и
не выполняется для всех
из области определения, то рассматриваемая функция не является ни четной, ни нечетной.
Свойства и графики тригонометрических функций
Вы знаете, что для любого числа х выполняются равенства
Это указывает на то, что значения функций синус и косинус периодически повторяются при изменении аргумента на
. Функции
являются примерами периодических функций.
Определение. Функцию называют периодической, если существует такое число
, что для любого
из области определения функции
выполняются равенства
Число Т называют периодом функции
.
Вы знаете, что для любого из области определения функции
выполняются равенства
Тогда из определения периодической функции следует, что тангенс является периодической функцией с периодом
.
Можно показать, что если функция имеет период
, то любое из чисел
…. а также любое из чисел
… также является ее периодом. Из этого свойства следует, что каждая периодическая функция имеет бесконечно много периодов.
Например, любое число вида является периодом функций у = sin х и у = cos х; а любое число вида
является периодом функции
Если среди всех периодов функции f существует наименьший положительный период, то его называют главным периодом функции f.
Теорем а 11.1. Главным периодом функций является число
; главным периодом функции
— число
.
Пример:
Найдите значение выражения:
1) 2)
3)
Решение:
1)
2)
3)
На рисунке 11.1 изображен график некоторой периодической функции с периодом
Фрагменты графика этой функции на промежутках [0; Т], [Т; 2Т], [2Т; ЗТ] и т. д., а также на промежутках [-Т ; 0], [-2Т; -Т ], [-ЗТ ; -2Т] и т. д. являются равными фигурами, причем любую из этих фигур можно получить из любой другой параллельным переносом на вектор с координатами , где
— некоторое целое число.
Пример:
На рисунке 11.2 изображен фрагмент графика периодической функции, период которой равен Т. Постройте график этой функции на промежутке .
Решение:
Построим образы изображенной фигуры, полученные в результате параллельного переноса на векторы с координатами (Т; 0), (2Т; 0) и (-Т; 0). Объединение данной фигуры и полученных образов — искомый график (рис. 11.3).
При повороте точки вокруг начала координат на углы от 0 до
большему углу поворота соответствует точка единичной окружности с большей ординатой (рис. 11.4). Это означает, что функция
возрастает на промежутке
. При повороте точки
на углы от
до
большему углу поворота соответствует точка единичной окружности с меньшей ординатой (рис. 11.4). Следовательно, функция
убывает на промежутке
При повороте точки на углы от
до
большему углу поворота соответствует точка единичной окружности с большей ординатой (рис. 11.4). Следовательно, функция
возрастает на промежутке
. Функция
на промежутке
имеет три нуля:
Если то
если
то
Функция на промежутке
достигает наибольшего значения, равного 1, при
и наименьшего значения, равного -1 , при
.
Функция на промежутке
принимает все значения из промежутка [-1; 1].
Полученные свойства функции позволяют построить ее график на промежутке
(рис. 11.5). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых углов, приведенной на форзаце 3.
На всей области определения график функции можно получить из построенного графика с помощью параллельных переносов на векторы с координатами
(рис. 11.6).
График функции называют синусоидой.
График функции называют косинусоидой (рис. 11.8).
Рассмотрим функцию на промежутке
, то есть на промежутке длиной в период этой функции (напомним, что функция
в точках
не определена).
Можно показать, что при изменении угла поворота от значения тангенса увеличиваются. Это означает, что функция
возрастает на промежутке
.
Функция на промежутке
имеет один нуль: х = 0. Если
, то
; если
Полученные свойства функции позволяют построить ее график на промежутке —
(рис. 11.9). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых аргументов, приведенной на форзаце 3.
На всей области определения график функции можно получить из построенного графика с помощью параллельных переносов на векторы с координатами
(рис. 11.10).
В таблице приведены основные свойства тригонометрических функций.
Пример:
Сравните: 1) и
2)
и
.
Решение:
1) Поскольку числа принадлежат промежутку
на котором функция
убывает, и
, то
2) Поскольку углы 324° и 340° принадлежат промежутку [180°; 360°], на котором функция возрастает, и 324° < 340°, то cos 324° < cos 340°.
Основные соотношения между тригонометрическими функциями одного и того же аргумента
В этом пункте установим тождества, связывающие значения тригонометрических функций одного и того же аргумента. Координаты любой точки единичной окружности удовлетворяют уравнению
. Поскольку
где
— угол поворота, в результате которого из точки
была получена точка
, то
(1)
Обратим внимание на то, что точка Р на единичной окружности выбрана произвольно, поэтому тождество (1) справедливо для любого . Его называют основным тригонометрическим тождеством.
Используя основное тригонометрическое тождество, найдем зависимость между тангенсом и косинусом.
Пусть . Разделим обе части равенства (1) на
. Получим:
Отсюда
Пример:
Упростите выражение:
1) 2 )
Решение:
1)
2)
Пример:
Известно, что Вычислите
.
Решение:
Имеем:
Отсюда или
3 3 Рисунок 12.1 иллюстрирует эту задачу.
Пример:
Найдите , если
Решение:
Имеем:
Поскольку , то
; следовательно,
Формулы сложения
Формулами сложения называют формулы, выражающие через тригонометрические функции углов
.
Докажем, что Пусть точки
получены в результате поворота точки
на углы
соответственно.
Рассмотрим случай, когда . Тогда угол между векторами
равен
(рис. 13.1). Координаты точек
и
соответственно равны
и
. Тогда вектор
имеет координаты
, а вектор
.
Выразим скалярное произведение векторов через их координаты:
В то же время по определению скалярного произведения векторов можно записать:
Отсюда получаем формулу, которую называют косинусом разности:
(1)
Формула (1) справедлива и в том случае, когда Докажем формулу косинуса суммы:
Имеем:
Формулы синуса суммы и синуса разности имеют вид:
Формулы тангенса суммы и тангенса разности имеют вид:
(2)
(3)
Тождество (2) справедливо для всех , при которых
Тождество (3) справедливо для всех
, при которых
Формулы, выражающие тригонометрические функции аргумента через тригонометрические функции аргумента а, называют формулами двойного аргумента.
В формулах сложения
положим Получим:
Эти формулы соответственно называют формулами косинуса, синуса и тангенса двойного аргумента.
Поскольку то из формулы
получаем еще две формулы:
Иногда эти формулы удобно использовать в таком виде:
или в таком виде:
Две последние формулы называют формулами понижения степени.
Пример:
Упростите выражение:
Решение:
1) Применяя формулы синуса суммы и синуса разности, получаем:
2) Заменим данное выражение на синус разности аргументов и
. Получаем:
Пример:
Докажите тождество
Решение:
Пример:
Найдите значение выражения .
Решение:
Используя формулу тангенса суммы углов 20° и 25°, получаем:
Пример:
Упростите выражение:
1) 2)
.
Решение:
1)
2)
Формулы приведения
Периодичность тригонометрических функций дает возможность сводить вычисление значений синуса и косинуса к случаю, когда значение аргумента принадлежит промежутку . В этом пункте мы рассмотрим формулы, позволяющие в таких вычислениях I л п ограничиться лишь углами из промежутка
Каждый угол из промежутка можно представить в виде
или
, или
где
. Например,
Вычисление синусов и косинусов углов вида
можно свести к вычислению синуса или косинуса угла
. Например:
Применяя формулы сложения, аналогично можно получить:
Эти формулы называют формулами приведения для синуса. Следующие формулы называют формулами приведения для косинуса:
Проанализировав записанные формулы приведения, можно заметить закономерности, благодаря которым не обязательно заучи вать эти формулы. Для того чтобы записать любую из них, можно руководствоваться следующими правилами.
- В правой части равенства ставят тот знак, который имеет левая часть при условии, что
- Если в левой части формулы аргумент имеет вид
, или
то синус заменяют на косинус и наоборот. Если аргумент имеет вид
то замена функции не происходит.
Покажем, как действуют эти правила для выражения . Предположив, что
приходим к выводу:
является углом III координатной четверти. Тогда
. По первому правилу в правой части равенства должен стоять знак « — ».
Поскольку аргумент имеет вид , то по второму правилу следует заменить синус на косинус. Следовательно,
.
Пример:
Упростите выражение .
Решение:
Имеем:
Пример:
Замените значение тригонометрической функции значением функции острого угла: 1) 2)
.
Решение:
1) . 2)
.
Уравнение COS x=b
Уравнение
Поскольку областью значений функции является промежуток
, то при
уравнение
не имеет решений. Вместе с тем при любом
таком, что
, это уравнение имеет корни, причем их бесконечно много. Сказанное легко понять, обратившись к графической интерпретации: графики функций
и
, где
, имеют бесконечно много общих точек (рис. 15.1).
Понять, как решать уравнение в общем случае, поможет рассмотрение частного случая. Например, решим уравнение
. На рисунке 15.2 изображены графики функций
.
Рассмотрим функцию на промежутке
(красная часть кривой на рисунке 15.2), то есть на промежутке, длина которого равна периоду этой функции. Прямая
пересекает график функции
на промежутке
в двух точках
и
, абсциссы которых являются противоположными числами.
Следовательно, уравнение на промежутке
имеет два корня. Поскольку
, то этими корнями являются числа
. Функция у = cos х — периодическая с периодом
. Поэтому каждый из остальных корней уравнения
отличается от одного из найденных корней
или
на число вида
.
Итак, корни рассматриваемого уравнения можно задать формулами . Как правило, эти две формулы заменяют одной записью:
Вернемся к уравнению , где
. На рисунке 15.3 показано, что на промежутке
это уравнение имеет два корня
и
, где а
(при b = 1 эти корни совпадают и равны нулю).
Тогда все корни уравнения имеют вид
Эта формула показывает, что корень играет особую роль: зная его, можно найти все остальные корни уравнения
. Корень
имеет специальное название — арккосинус.
Определение. Арккосинусом числа , где
, называют такое число
из промежутка
, косинус которого равен
. Для арккосинуса числа
используют обозначение
. Например,
Вообще, , если
Теперь формулу корней уравнения
, можно записать в следующем виде:
(1)
Заметим, что частные случаи уравнения (для
) были рассмотрены ранее (см. п. 9).
Напомним полученные результаты:
Такие же ответы можно получить, используя формулу (1). Имеет место равенство
Пример:
Решите уравнение:
1) 2 )
3)
Решение:
1) Используя формулу (1), запишем:
Далее получаем:
Ответ: 2) Имеем:
Ответ:
3) Перепишем данное уравнение следующим образом:
Отсюда
Тогда
Ответ:
Уравнения sin x=b и tg x=b
Уравнения
Поскольку областью значений функции является промежуток [-1; 1], то при | b | > 1 уравнение
не имеет решений. Вместе с тем при любом
таком, что
, это уравнение имеет корни, причем их бесконечно много. Отметим, что частные случаи уравнения
(для
) были рассмотрены ранее (см. п. 9). Напомним полученные результаты:
Для того чтобы получить общую формулу корней уравнения , где
, обратимся к графической интерпретации.
На рисунке 16.1 изображены графики функций и
,
Рассмотрим функцию на промежутке
(красная часть кривой на рисунке 16.1), то есть на промежутке, длина которого равна периоду этой функции. На этом промежутке уравнение
имеет два корня
и
, где
(при
эти корни совпадают и равны
).
Поскольку функция — периодическая с периодом
, то каждый из остальных корней уравнения
отличается от одного из найденных корней на число вида
Тогда корни уравнения можно задать формулами
Эти две формулы можно заменить одной записью:
(1)
Действительно, если — четное число, то есть
то получаем
если
— нечетное число, то есть
,Z, то получаем
Формула (1) показывает, что корень играет особую роль: зная его, можно найти все остальные корни уравнения
. Корень
имеет специальное название — арксинус.
Определение. Арксинусом числа , где
, называют такое число
из промежутка
, синус которого равен
.
Для арксинуса числа используют обозначение
.
Например,
Вообще, , если
Теперь формулу корней уравнения можно записать в следующем виде:
(2) Имеет место равенство
Пример:
Решите уравнение: 1) 2)
Решение:
1) Используя формулу (2), запишем:
Далее получаем:
Ответ :
2) Перепишем данное уравнение следующим образом:
Тогда
Ответ:
Поскольку областью значений функции
является множество
, то уравнение
имеет решения при любом значении
.
Для того чтобы получить формулу корней уравнения , обратимся к графической интерпретации. На рисунке 16.2 изображены графики функций
Рассмотрим функцию на промежутке
(красная кривая на рисунке 16.2), то есть на промежутке, длина которого равна периоду данной функции. На этом промежутке уравнение
при любом
имеет единственный корень
.
Поскольку функция — периодическая с периодом
, то каждый из остальных корней уравнения
отличается от найденного корня на число вида
Тогда корни уравнения можно задать формулой
Полученная формула показывает, что корень
играет особую роль: зная его, можно найти все остальные корни уравнения
. Корень
имеет специальное название — арктангенс.
Определение. Арктангенсом числа называют такое число
из промежутка
, тангенс которого равен
.
Для арктангенса числа используют обозначение
Например,
Вообще,
Теперь формулу корней уравнения можно записать в следующем виде:
Имеет место равенство
Пример:
Решите уравнение
Решение:
Имеем:
Ответ :
Тригонометрические уравнения, сводящиеся к алгебраическим
В пунктах 15, 16 мы получили формулы для решения уравнений вида Эти уравнения называют простейшими тригонометрическими уравнениями. С помощью различных приемов и методов многие тригонометрические уравнения можно свести к простейшим.
Пример:
Решите уравнение
Решение:
Выполним замену Тогда данное уравнение принимает вид
Отсюда
Поскольку
то уравнение
не имеет корней. Следовательно, исходное уравнение равносильно уравнению
Окончательно получаем:
Ответ:
Пример:
Решите уравнение
Решение:
Используя формулу преобразуем данное уравнение:
sin х — 3(1 — 2 sin2x) — 2 = 0; 6 sin2 х + sin x — 5 = 0.
Пусть . Получаем квадратное уравнение
Отсюда
.
Итак, данное уравнение равносильно совокупности двух уравнений:
Имеем:
Ответ:
Пример:
Решите уравнение
Решение:
Поскольку то данное уравнение можно записать следующим образом:
Отсюда
Пусть
. Имеем:
Тогда
Получаем, что данное уравнение равносильно совокупности двух уравнений:
Отсюда
Ответ :
ГЛАВНОЕ В ПАРАГРАФЕ 2
Радианная мера угла
Углом в один радиан называют центральный угол окружности, опирающийся на дугу, длина которой равна радиусу окружности. Радианная и градусная меры угла связаны формулами
Косинус, синус и тангенс угла поворота
Косинусом и синусом угла поворота называют соответственно абсциссу
и ординату
точки
единичной окружности, полученной в результате поворота точки
вокруг начала координат на угол
.
Тангенсом угла поворота называют отношение синуса этого sin о угла к его косинусу:
Знаки значений тригонометрических функций
Периодические функции
Функцию называют периодической, если существует такое число
что для любого
из области определения функции
выполняются равенства
Число Т называют периодом функции
Если среди всех периодов функции существует наименьший положительный период, то его называют главным периодом функции
Связь тригонометрических функций одного и того же аргумента
Формулы сложения
Формулы приведения
Для того чтобы записать любую из формул приведения, можно руководствоваться следующими правилами:
1) в правой части равенства ставят тот знак, который имеет левая часть при условии, что
2) если в левой части формулы аргумент имеет вид или
то синус меняют на косинус и наоборот. Если аргумент имеет вид
то замена функции не происходит.
Формулы двойного аргумента
Арккосинус, арксинус и арктангенс
Арккосинусом числа , где
называют такое число
из промежутка
косинус которого равен
Арксинусом числа
, где
называют такое число
из промежутка
синус которого равен
Арктангенсом числа
называют такое число
из промежутка
, тангенс которого равен
Решение простейших тригонометрических уравнений
——
Тригонометрические функции
Прежде чем рассматривать тригонометрические функции, напомним, что такое радианная мера угла.
Радианной мерой центрального угла называется отношение длины дуги, на которую он опирается, к радиусу окружности. Если —длина радиуса,
—длина дуги, то радианная мера дуги
выразится так:
Так как и
измеряются линейными единицами, то из (1) следует, что
—число отвлеченное. Из геометрии известно, что
где —градусная мера центрального угла, опирающегося на дугу
. Поэтому радианная мера угла
будет
Находя из формулы (2), получим выражение градусной меры угла через радианную:
Пример:
Найти радианную меру угла 30°.
Решение:
Подставляя в формулу (2) вместо число 30, найдем
Пример:
Найти градусную меру угла, радианная мера которого равна 0,8.
Решение:
Подставляя в формулу (3), находим
или приближенно, полагая , найдем
. Так как
—постоянное число, то формула (2) устанавливает прямую пропорциональность между числами
и
.
В тригонометрии, помимо положительных углов, вводятся и отрицательные, поэтому радианная мера угла может быть и отрицательной. Например, угол —90° имеет радианную меру .
График функции y=sin x
График функции
При построении графиков тригонометрических функций можно обойтись без таблиц. Для этого надо поступить так (рис. 26):
1. Возьмем окружность единичного радиуса и от точки отложим на окружности в направлении, противоположном движению часовой стрелки, дугу
, длину которой обозначим
. Тогда радианная мера угла
будет численно равна
. Построим линию синуса этого угла; она изобразится отрезком
. Так как
, то синус угла, найденный как отношение
, численно равен длине отрезка
.
2. Возьмем оси координат (рис. 26). На оси отложим отрезок
, длина которого равна длине
дуги
. Отрезок
, перпендикулярный оси, возьмем равным длине отрезка
. Тогда
. Следовательно, точка
имеет координаты
и
. Проделав это построение для различных дуг, получим ряд точек, лежащих на графике функции
. На рис. 26 построены точки, соответствующие дугам:
Функция периодическая и имеет период
. Это значит, что для любого значения
выполняется равенство^
График функции y=sin wx
График функции
При изменении аргумента от 0 до синус принимает все значения от
до
. При дальнейшем увеличении аргумента значения синуса в силу периодичности повторяются.
Если рассмотрим функцию , то при изменении аргумента
от 0 до
функция
примет все значения от
до
. При дальнейшем увеличении аргумента сох значения sin сох будут повторяться. Найдем период функции
. Так как значения функции начнут повторяться с того момента, когда аргумент
станет равным
, то период найдется из равенства
.
Отсюда получаем, что . Следовательно,
есть период функции
. В самом деле,
Поэтому функция имеет график, изображенный на рис. 27. Если
, то график
сжимается по сравнению с графиком
. Если же
, то график растягивается (на рис. 27
).
График функции y=sin (x-φ)
График функции
Перейдем от старых осей координат к новым, начало которых находится в точке . Старые координаты выражаются через новые так (см. § 2 гл. III):
Подставляя эти выражения в уравнение , получим
, т. е. график функции
в новой системе координат выглядит так же, как график функции
в старой системе координат. Следовательно, график функции
в старой системе координат можно получить, сдвигая график
на
вправо, если
, и влево, если
(на рис. 28
).
График функции y=A sin x
График функции
Если , то каждая ордината на графике
имеет то же направление, что и ордината точки, лежащей на графике
, только ее длина умножается на число
. При этом, если
, то ордината увеличивается, если же
, то уменьшается. При
ордината изменяет направление на противоположное. На рис. 29 изображены графики функций
.
Таким образом, уравнение определяет на плоскости кривую линию, называемую синусоидой. Коэффициент
, называемый частотой, влияет на растяжение синусоиды в направлении оси
. При этом, если
, то синусоида растягивается, если же
, то сжимается. Коэффициент
называется фазой, его величина влияет на сдвиг синусоиды, как целого, вдоль оси
. Если
положителен, то сдвиг производится вправо, если же
отрицателен, то — влево. Коэффициент
называется амплитудой, его величина влияет на растяжение синусоиды в направлении оси
.
На рис. 30 показано последовательное построение графика функции. Сверху изображен график функции
, ниже—график функции
, еще ниже—график
и в самом низу —график функции
. На всех четырех графиках точки, имеющие одну и ту же абсциссу, лежат на одной вертикальной прямой.
Указанный метод построения синусоид может быть использован и для построения косинусоид. Приведем пример.
Пример:
Построим график функции .
Решение:
Применяя формулы приведения, известные из тригонометрии будем иметь
Этот график уже построен на рис. 30, 4.
————-
Тригонометрические функции
Периодические функции
Многие события, происходящие в природе — восход и закат солнца, появление комет, сезонные изменения температуры воздуха, всплеск и затухание волн в океане и т.п., являются циклически повторяющимися событиями. Процесс по производству оборудования, движение частей машины и т.д., так же могут быть заданы периодической функцией. Исследуем периодические переменные на примере. Работа станка по нарезке ленты. В фирме по производству измерительной ленты имеется станок, при помощи которого тонкая лента разрезается на кусочки по 3 м и сворачивается. График работы станка и описание принципа работы висит на стене.
1. 0,5 см-наибольшая высота, на которую поднимается нож.
2. Нож бездействует 3 секунды, с 0-3, 4 -7 секунды и т.д.
3. Нож опускается вниз в интервале с 3 до 3,5 сек., отрезает ленту, и с 3,5 до 4 сек. нож поднимается вверх.
4. На один полный цикл тратится 4 секунды. На какой, по вашему секунде, нож снова отрежет ленту?
Станок по изготовлению измерительной ленты циклически повторяет работу. Один цикл длится 4 секунды. График зависимости высоты ножа от времени, также соответствует одному циклу. В следующий раз нож разрежет ленту на 11,5 секунде. Такие функции называются циклическими (периодическими) функциями. Значения периодических функций повторяются на определённом интервале.
Пусть существует такое число , что для произвольного х из области определения функции
, также принадлежит области определения и удовлетворяют условию
. Тогда
называется периодической функцией и, если период равен Т, то
также является периодом
. На самом деле, например,
.
Наименьший положительный период функции называется его основным периодом.
Периодичность тригонометрических функций
Можно увидеть , что при совпадении конечных сторон угла поворота, значения тригонометрических функций совпадают. Например, для всех значений х. Значит, значения тригонометрических функций повторяются. Значение синуса и косинуса повторяются с периодом
, а тангенса и котангенса с периодом
. Тригонометрическими функциями числового аргумента х называются одноименные тригонометрические функции угла равного х радиан. Все свойства функций для угла (четность и нечетность, периодичность и тд.) одинаковы для тригонометрических функций от числового аргумента. Чтобы построить график этой функции, достаточно изобразить его на отрезке, длина которого равна периоду, а затем повторить его.
График функций y= sin x и y=cos x
График функций
График функции y=sin x
График функции .
Периодическая функция ири движении по окружности при повороте на угол
показывает высоту (расстояние по вертикали) от оси х. На единичной окружности координата каждой точки равна
и удовлетворяют уравнению
. Здесь угол
угол между единичным радиусом и положительным направлением оси х. Значит, координата у определяется
.
Между дугой, которую описывает точка, и значениями функции , существует однозначное соответствие.
Разобьём дугу, принадлежащую I четверти на три равных дуги и в точках деления проведём прямые, параллельные оси абсцисс. Через точки пересечения прямых
с соответствующими параллельными прямыми проведём сплошную линию. Получим график, как показано на рисунке.
Известно, что единичная окружность совершает полный оборот за 3600 или радиана. Построим, аналогичным образом, график функции
на промежутке
:
Так как синус является периодической функцией, то на промежутке длиной : график
будет повторятся заново. Если обозначить функцию через у, а аргумент через х, то можно записать
. График функции
на промежутке
можно начертить, как показано ниже:
График функции называется синусоидой (с амплитудой, равной 1, и периодом
).
График функции можно построить при помощи таблицы значений. Так как синус является периодической функцией, то достаточно построить этот график на отрезке [0;
] длиной
. Отметим значение точек из таблицы на графике и проведём сплошную линию. Полученный график, является графиком функции
.
Как из таблицы значений, так и по графику видно, что график функции, проходит через точку (0; 0) начало координат.
При возрастании х от 0 до значения у возрастают от 0 до 1;
По таблице значений и графику функции перечислим её свойства:
- Область определения множество всех действительных чисел.
- Область значений отрезок [-1; 1].
- Функция
нечётная:
, т.е. график симметричен относительно начала координат.
- Функция периодическая с периодом
.
- Синусоида пересекает ось абсцисс в точках …, —
, …, и т.д., т.е. при
функция
обращается в нуль. Синусоида проходит через начало координат.
- Наибольшее значение равное 1 функция принимает при х … ,
;
; ….., т.е. при
.
- Наименьшее значение равное -1 функция принимает при
;
т.е. при
.
График функции y=cos x
График функции .
График функции на отрезке [0;
] можно построить аналогично графику функции
геометрическим способом, используя единичную окружность, а также при помощи таблицы значений. Так как
, т.е. график можно построить переместив график функции
на
влево. Получаем график функции
.
По графику перечислим свойства функции :
- Область определения: множество всех действительных чисел
.
- Область значений отрезок [-1; 1].
- Функция
чётная функция (график симметричен относительно оси у)
- Функция периодическая с периодом
- График пересекает ось абсцисс в точках … ,
,… , т.д., т.е. при
функция
обращается в нуль. График пересекает ось ординат в точке (0; 1).
- Наибольшее значение равное 1 функция принимает при х …,
,… , т.е. при
.
- Наименьшее значение равное — 1 функция принимает при
,… , т.е. при
.
Строить графики функций у = sin х и у = cos х удобно при помощи пяти основных точек (точек пересечения с осью абсцисс и точками экстремума). Последовательность пяти точек для функции у = sin х на промежутке [0;] может быть задана так:
Последовательность пяти точек для функции у = cos х на промежутке [0; ] может быть задана так:
Преобразование графиков функций у = sin х и у = cos х.
Растяжение и сжатие.
Пример 1. Если на графики функции у = sinx абсциссы оставить без изменения, а ординаты увеличить в 2 раза, то получим точки, принадлежащие графику функции у = 2 sinх. Это говорит о том, что график функции у = 2 sinх может быть построен из графика функции у = sinх растяжением от оси абсцисс в 2 раза. График функции у = 0,5 sinх можно построить сжатием к оси абсцисс графика функции у = sinх в 2 раза.
Графики функций у = a sin х и у = a cos х получаются соответственно из графиков функций у = sin х и у = cos х растяжением от оси абсцисс при и сжатием, при
. При а < 0 график функции отображается симметрично относительно оси х.
Пример 2. График функции у = sin 2х в 2 раза «обгоняет» график функции у = sin х. Если функция у = sin х принимает значения от 0 до 1 на промежутке то функция у = sin 2х эти же значения принимает на интервале в этом промежутке
. Точки графика функции у = sin 2х можно получить, умножив абсциссы точек графика функции у = sin х на
, при этом не меняя значения ординат. График функции у = sin 2х получается из графика у = sin х сжатием в 2 раза и целый период умещается в отрезке
. График функции
получается растяжением графика функции у = sin х в 2 раза и целый период умещается в отрезок
.
Графики функций у = sin bx и у = cos bx соответственно получаются из графиков функций у = sin х и у = cos х сжатием к оси ординат, при b > 1 и растяжением при 0 < b < 1. В случае b < 0 с учётом того, что синус является нечётной функцией, а косинус чётной приводит к случаям, указанным выше.
Графики функций полученные растя-жснием(сжатием) вдоль координатных осей графиков
также являются синусоидами (косинусоидами).
При увеличении значения амплитуда увеличивается, при уменьшении — уменьшается. При увеличении значения
период уменьшается, при уменьшении — увеличивается.
Пример. Постройте график функции .
1.График функции строится растяжением в 2 раза графика функции
от оси ординат.
2.Полученный график растягивается от оси абсцисс в 2 раза.
Исследование. Пусть материальная точка движется по окружности радиуса из начальной точки А (а; 0) с угловой скоростью
.
1)Для этой точки запишите зависимость координаты от времени .
2)Найдите наибольшее и наименьшее значение абсцисс и ординат точки.
3)Обоснуйте, что положение точки не меняется при изменении
времени на .
Период и амплитуда функций у = a sin bx и у = a cos bx
Теорема. Если основной период функции равен Т, то основной период функции
равен
(здесь а и b числа, отличные от нуля).
Отсюда получаем, что является основным периодом для функций
. На самом деле,
Число является амплитудой. Амплитуда равна половине разности наибольшего и наименьшего значения.
Пример. Для функции амплитуда равна |-3| или 3, основной 2л л период
.
Сдвиг по горизонтали — фаза.
В функциях член с показывает смещение графика по горизонтали, которое называется фазой. Пример. Постройте график функции
Построим график функции растяжением графика
функции у = cos х в 2 раза от оси ординат. График функции
можно получить смещением графика
функции вправо на
единиц, т.е. получаем
график функции
Смещение по вертикали
В функциях член d показывает смещение но вертикали: если d > 0 график функции сдвигается вверх, d < 0 график сдвигается вниз.
Пример. Постройте график функции у = 2 sin х — 1.
Решение: ниже показаны этапы преобразования графика функции
у = sin x в график функции у = 2 sin х — 1 по шагам.
1.Увеличиваем амплитуду в 2 раза получаем график у = 2 sinx.
2.Сдвигаем график вниз на одну единицу и получаем график функции у = 2 sinx — 1.
Множество значений функции .
График функции у= 2 sin х-1 изменяется относительно прямой у = -1 на 2 единицы вверх и вниз. Эта линия называется средней линией.
максимум = средняя линия + амплитуда
минимум = средняя линия — амплитуда
Пример. Постройте график функции .
1)График функции получается из графика функции
у = cos х сжатием к оси ординат в 2 раза.
2) Смещая график функции у = cos 2х влево на единицы получаем график функции
, т.е.
.
3) Растянем график функции вдоль оси ординат в 3 раза и получим график функции
.
4) Сместим график функции по вертикали на 1 единицу вверх и получим график функции
.
Построение синусоиды по пяти основным точкам
Преобразование при помощи движения и подобия сохраняет «форму» кривой. Поэтому не только график синуса, но в тоже время и кривая, полученная растяжением (сжатием) и последовательными смещениями, называется синусоидой. Свойства функций, заданных в виде и
аналогичны свойствам функций синуса и косинуса, что помогает при их исследовании. В начале необходимо найти их период и точки, в которых значения функции равны 0 или ± а. График функции
и
можно легко построить по значениям пяти важных точек в промежутке
по следующему алгоритму.
- Определяем амплитуду графика.
- Определяем основной период графика
- Разбиваем отрезок [0; Т] на 4 равных части:
.
- Пять важных точек — точки пересечения с осью х, точки максимума и минимума. Для вышеупомянутых точек х находятся значения у.
- Координаты 5-ти точек (х; у) отмечаются на координатной плоскости.
- Эти точки соединяются. Полученная синусоидальная кривая является графиком для одного периода. Повторяя построенный график, можно получить график заданной функции на любом отрезке.
Пример 1. Постройте график функции по пяти основным точками.
Решение: амплитуда:
Основной период:
Отрезок, соответствующий одному периоду по оси х разделим на четыре равных части. Для целого периода равна
. Начиная от точки
, через каждые
отметим справа последовательно точки
через
периода,
через
периода,
через
периода и, наконец,
через целый период.
Вычислим значения функции в указанных точках.
Отметим координаты этих точек на координатной плоскости, и соединим сплошной линией. Данный график является графиком функции на отрезке
. Если параллельно перенести данный график вдоль оси абсцисс на
то получим график функции
на всей числовой оси (показано пунктиром).
Пример 2. Постройте график функции .
Решение. Амплитуда: . Значения у меняются от -2 до 2.
Основной период: .
Разделим отрезок (один период ) на 4 равные части. Найдём значения х и соответствующие значения функции. Построим график.
Пример 3. Для нахождения начальной и конечной точек периода функции надо решить неравенство
Здесь начальная точка — показывает и фазу тоже.
Разделив отрезок на 4 равные части необходимо определить пять основных точек. Значения х в этих пяти точках будут
.
В этих точках х для функции получаем точки
и строим график. Для функции
имеем: амплитуда:
Тригонометрические функции и периодические события
В природе и в жизни мы достаточно часто сталкиваемся с периодическими процессами — вращение Земли, изменение времен года, дыхание, сердечный ритм сердца человека и т.д.. Также периодическими являются очень многие физические явления. Например, при исследовании колебания электрических и оптических волн используют периодические функции. Самые простые колебания называются гармоническими колебаниями и записываются в виде .
Пример 1. Биология. В биологии прогнозирование численности зверей и птиц моделируют с помощью периодических функций. Учёные исследуют численность сов и мышей в одном регионе. В результате моделируется функция численности особей (по месяцам).
Для сов эта функция записывается так: ,
для мышей так: .
По информации, представленной на графике, можно сделать выводы
о численности сов и мышей, которые являются нищей для сов.
а)Постройте графики каждой функции.
б)Какой вывод можно сделать об изменении численности сов и мышей?
в)Исследуйте отношение численности сов и мышей в зависимости от времени.
Решение:
а)
Для сов имеем: максимум функции 1100, минимум 900.
Амплитуда: 100. Сдвиг по вертикали: d = 1000 (начальное значение). Средняя линия = 1000. Период:, тогда
Т.е., основной период функции 24 месяца.
Для мышей имеем: максимум функции 24 000, минимум 16 000.
Амплитуда : 4000. Сдвиг по вертикали: d = 20000 (начальное значение). Средняя линия = 20000. Период:,
, тогда
.
То есть, основной период данной функции, также 24 месяца.
б) Если графики построены в одном масштабе, то их можно сравнить. Так как мыши являются пищей для сов, то при увеличении сов, численность мышей уменьшается и стремиться к минимальному значению. При уменьшении сов численность мышеи увеличивается и достигает наибольшего значения в то время, когда количество сов достигает минимума
в) В таблице показано отношение количества сов и мышей за каждые 6 месяцев.
Это отношение должно изменяться в определённой закономерности. Для того, чтобы увидеть эту закономерность, построим функцию соответствующую отношению при помощи граф калькулятора. Функцию введём в граф калькулятор как
, а функцию
как
и построим график функции
. Увидим, что в этом случае отношение двух периодических функций является
периодической функцией.
Графики функций y=tg x и y=ctg x
Графики функций .
Исследование. Изменение тангенса угла.
1) На листе в клетку изобразите координатную плоскость и единичную окружность, с центром в начале координат. К окружности проведите касательную в точке (1;0).
2)Обозначим через К точку пересечения конечной стороны угла поворота с касательной. Из
. Значение
, для острого угла поворота
равно длине отрезка АК.
3)В какой точке пересекает конечная сторона угла 45° касательную?
4)При помощи транспортира изобразите ещё несколько разных углов и и найдите ординаты точек пересечения с касательной.
5)Как изменяется ордината точки К, при стремлении угла к 90″? Пересекается ли касательная с конечной стороной угла поворота при
= 90°?
6)Известно, что для периодической функции с периодом Т достаточно изучить функцию на одном интервале длиной Т.
На каком интервале для целесообразно изучение функции?
7) не определён для
= 90° и
= -90°. В интервале (-90°; 90°) функция определена.
Заполните таблицу и постройте график функции тангенса.
8) Постройте график функции при помощи граф калькулятора.
Функция y = tg х
Функция х.
Значения тангенса для угла равно угловому коэффициенту прямой, проходящей через начало координат и точки с координатами (cos
; sin
), расположенной на единичной окружности. Как видно по рисунку, длина отрезка касательной AQ равна ординате точки Q. Координаты точки Q равны
. Прямая AQ называется прямой тангенсов.
При график функции
проходит через начало координат.
Если х, оставаясь меньше , стремит к нему, то значения
увеличиваются и приближаются к
. Прямые
, так же как и
являются вертикальными асимптотами графика
.
Разобьём I четверть единичной окружности и отрезок на 4 равные части. На линии тангенсов построим отрезки, равные значению соответствующих углов. На оси Ох отметим точки, соответствующие данным углам, и восстановим к каждой из них перпендикуляр. Через эти точки, параллельно оси Ох, проведём параллельные прямые. Полученную последовательность точек соединим сплошной линией.Получим график функции
в промежутке
. Учитывая, что
, преобразуем полученный график симметрично относительно начала координат, получим график функции
на интервале
Зная, что период функции равен
, построенный график продолжим на
вправо и влево. Получим график, который называется тангенсоида.
Основные свойства
График функции не является непрерывным, прерывается при х равных и кратных в нечетное количество раз
Функция не имеет максимумов и минимумов.
Область значений функции множество всех действительных чисел.
Основной период функции равен .
График функции пересекает ось х в точках
Функция не определена в точках . Пунктирные линии, проходящие через эти точки являются вертикальными асимптотами.
Область определения функций .
Функция возрастает между двумя соседними асимптотами.
Функция нечетная:
Функция y=ctg x
Функция :
Для построения графика функции — воспользуемся
тождеством
1)Переместим график функции влево вдоль оси абсцисс на
2)Отобразим полученную кривую симметрично относительно оси абсцисс.
При значения тангенса равны нулю, функция котангенса при данных значениях х не определена:
Как видно по графику, точки пересечения с осью х (нули) и асимптоты функций тангенса и котангенса меняются местами.
Основные свойства
График функции y= a tg bx
График функции .
Для построения графика функции , где а и b отличные от нуля различные числа, нужно определить следующее:
1.Период:Например, период функции
равен:
2.Вертикальные асимптоты:
Асимптотами функции являются прямые:
3. Определяется средняя точка отрезка между точкой пересечения оси х с асимптотой. Соответствующие значения у равны или а, или -а.
Пример 1. Построим график функции .
Решение. период:
Точка пересечения с осью абсцисс: (0; 0) Самая близкая асимптота от начала координат: то есть
и
то есть
Средние точки:
и на графике им соответствуют точки
.
Пример 2.
Постройте график функции на одном периоде
Решение: Для функции значения х на одном периоде меняется в интервале
. Соответствующий промежуток для функции
для одного периода можно найти решив неравенство:
Асимптоты проходят через точки
. Учитывая точки
и
построим схематично график функции.
Обратные тригонометрические функции
Точек, в которых синусоида пересекает прямую, параллельную оси абсцисс, бесконечно много. Значит, на всей числовой оси для
функции нет обратной функции.
Однако, на отрезке возрастает и от -1 до 1 принимает все значения, а также каждому значению аргумента соответствует единственное значение функции. Значит, на отрезке
функция sin х обратима и при
уравнение
на отрезке
имеет единственный корень.
Угол, из промежутка синус которого равен а, называется арксинусом числа а и записывается как arcsin а. Равенство х = arcsin а эквивалентно двум условиям: 1)
2)
Примеры: так как
и
так как
и
Из определения имеем: .
Можно показать, что
При помощи арксинуса можно задать функцию , с областью определения [-1; 1] и множеством значений
.
Функция также записывается как
График функции получается симметричным преобразованием графика функции
на промежутке
относительно прямой
. Областью определения функции [- 1; 1], область значений
.
Аналогично получаем, что на всей числовой оси не существует функции, обратной для . Однако на отрезке
функция
убывает и принимает все значения из отрезка [-1; 1]. То есть, на отрезке
функция
обратима и при
уравнение
имеет единственный корень на
.
Угол, из промежутка косинус которого равен а, называется арккосинусом числа а и записывается как arccos а.
Равенство эквивалентно двум условиям: 1)
2)
Примеры.