Tg ctg sin cos алгебра

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) — это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) — это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) — это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг — вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором — теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 Угол поворота

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α — это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α — это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α — это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α — это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят «синус угла поворота α». Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Синус, косинус, тангенс и котангенс: основные формулы​​​​​​​

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Тригонометрия в прямоугольном треугольнике
  • Тригонометрический круг
  • Основное тригонометрическое тождество
  • Таблица значений тригонометрических функций
  • Градусы и радианы
  • Формулы приведения
  • Теорема синусов
  • Расширенная теорема синусов
  • Теорема косинусов
  • Тригонометрические уравнения (10-11 класс)
  • Примеры решений заданий из ОГЭ

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрические функции в прямоугольном треугольнике Тригонометрические функции в прямоугольном треугольнике

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

Прямоугольный треугольник

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Тригонометрический круг

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Синус и косинус на тригонометрическом круге

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Тригонометрический круг, тупой угол

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Тригонометрический круг, значения углов

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos 150 ° = − 3 2

sin 150 ° = 1 2

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

Основное тригонометрическое тождество, тригонометрический круг

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

Тригонометрический круг, формулы приведения

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β:

Смежные углы

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

Треугольник ABC

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

Треугольник ABC, описанная окружность радиуса R

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Треугольник ABC

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Скачать домашнее задание к уроку 1.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Что такое синус, косинус, тангенс, котангенс

18 мая 2022

Сегодня мы узнаем, что такое синус, косинус, тангенс и котангенс. Это первый и самый важный урок по тригонометрии на всём сайте.

Содержание:

  1. Ключевые определения: синус, косинус, тангенс, котангенс.
  2. Почему эти значения зависят только от углов?
  3. Стандартные углы: 30°, 45°, 60°.
  4. Простейшие свойства синуса, косинуса, тангенса, котангенса.
  5. Тригонометрия на координатной сетке.

Никаких сложных формул и длинных решений. Всё расписано максимально подробно. Изучите этот урок — и никаких проблем с тригонометрией не будет. Погнали!

1. Ключевые определения

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Мы видим, что острый угол $alpha $ образован гипотенузой $c$ и катетом $b$. Такой катет будем называть прилежащим. А катет $a$, который не участвует в формировании угла $alpha $, назовём противолежащим:

Прилежащий катет, противолежащий катет и гипотенуза

Это общепринятые названия: как только в прямоугольном треугольнике отмечен острый угол, для него немедленно можно указать прилежащий катет и противолежащий. И тут мы переходим к ключевым определениям.

1.1. Синус, косинус, тангенс, котангенс

Итак, пусть дан прямоугольный треугольник с острым углом $alpha $.

Прямоугольный треугольник

Тогда:

Определение 1. Синус угла $alpha $ — это отношение противолежащего катета к гипотенузе:

[sin alpha =frac{text{противолежащий катет}}{text{гипотенуза}}=frac{a}{c}]

Определение 2. Косинус угла $alpha $ — это отношение прилежащего катета к гипотенузе:

[cos alpha =frac{text{прилежащий катет}}{text{гипотенуза}}=frac{b}{c}]

Определение 3. Тангенс угла $alpha $ — это отношение противолежащего катета к прилежащему:

[operatorname{tg}alpha =frac{text{противолежащий катет}}{text{прилежащий катет}}=frac{a}{b}]

Определение 3. Котангенс угла $alpha $ — это отношение прилежащего катета к противолежащему:

[operatorname{ctg}alpha =frac{text{прилежащий катет}}{text{противолежащий катет}}=frac{b}{a}]

Вот так всё просто! Берём один катет, делим его на гипотенузы (или на другой катет) — и получаем выражение для синуса, косинуса, тангенса и котангенса. Все эти выражения называются тригонометрическими («тригонометрия» = «треугольники измеряю»).

Рассмотрим пару примеров.

Задача 1. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Прямоугольный треугольник и острый угол

Решение. Это классический прямоугольный треугольник с катетами 3 и 4 и гипотенузой 5. Угол $alpha $ (он же — угол $A$ или угол $BAC$) образован прилежащим катетом $AB=3$гипотенузой $AC=5$. Следовательно катет $BC=4$ — противолежащий.

Имеем:

[begin{align}sin alpha& =frac{BC}{AC}=frac{5}{4} \ cos alpha& =frac{AB}{AC}=frac{3}{5} \ operatorname{tg}alpha& =frac{BC}{AB}=frac{4}{3} end{align}]

Далеко не всегда будут получаться такие красивые ответы. Чаще они будут содержать корни — это следствие теоремы Пифагора. Но важно понимать: как только мы находим длины катетов и гипотенузу, мы сразу можем найти и синусы, косинусы, тангенсы.

Далее в примерах мы не будем считать котангенсы, потому что из формулы котангенса очевидно, что они легко выражаются через тангенсы:

[operatorname{ctg}alpha =frac{1}{operatorname{tg}alpha }]

Но об этом чуть позже.

Задача 2. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Равнобедренный прямоугольный треугольник

Это равнобедренный прямоугольный треугольник с катетами $AB=BC=1$. Найдём гипотенузу по теореме Пифагора:

[begin{align}{{ AC}^{2}} & ={{AB}^{2}}+{{BC}^{2}}=1+1=2 \ AC & =sqrt{2} \ end{align}]

Теперь найдём синус, косинус и тангенс:

[begin{align}sin alpha &=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos alpha &=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}alpha&=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Простое правило, чтобы не запутаться, где прилежащий катет, а где противолежащий. Просто помните: приставка «ко» означает «вместе», «сообща». Поэтому «косинус» — это «катет, лежащий рядом, к гипотенузе», «котангенс» — это «катет, лежащий рядом, к противолежащему». И никак иначе.:)

1.2. Задачи для тренировки

Перед тем как переходить к следующей части урока, предлагаю 4 примера для тренировки.

Задача 3. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Cинус, косинус, тангенс острого угла снизу

Решение.

[begin{align}sin alpha &=frac{5}{13} \ cos alpha &=frac{12}{13} \ operatorname{tg}alpha &=frac{5}{12} \ end{align}]

Задача 4. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс острого угла сверху

Решение.

[begin{align}sin alpha &=frac{8}{17} \ cos alpha &=frac{15}{17} \ operatorname{tg}alpha &=frac{8}{15} \ end{align}]

Задача 5. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}}&={{3}^{2}}-{{1}^{2}}=9-1=8 \ l&=sqrt{8}=2sqrt{2} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{3} \ cos alpha&=frac{2sqrt{2}}{3} \ operatorname{tg}alpha&=frac{1}{2sqrt{2}}=frac{sqrt{2}}{4} \ end{align}]

Задача 6. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Прямоугольный треугольник и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}} &={{2}^{2}}-{{1}^{2}}=4-1=3 \ l &=sqrt{3} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{2} \ cos alpha&=frac{sqrt{3}}{2} \ operatorname{tg}alpha&=frac{1}{sqrt{3}}=frac{sqrt{3}}{3} \ end{align}]

Как видим, считать синусы, косинусы и тангенсы совсем несложно. Перейдём теперь к принципиально важному вопросу: а зачем вообще всё это нужно?

2. Теорема о единственности

Ключевая идея: синус, косинус, тангенс и котангенс зависят только от величины угла $alpha $ и никак не зависят от прямоугольного треугольника, в котором идут вычисления.

Такого не произойдёт. Потому что есть теорема о единственности.

2.1. Формулировка теоремы

Теорема. Значение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике определяются только величиной этого угла и никак не зависят от самого треугольника.

2.2. Доказательство

Рассмотрим произвольный острый угол $alpha $. Для удобства обозначим его вершину буквой $A$:

Острый угол

А затем впишем в него два произвольных прямоугольных треугольника — $ABC$ и $AMN$. Любым удобным способом. Например, можно вписать эти треугольники вот так:

Острый угол и подобные треугольники

А можно и вот так — это не имеет никакого значения:

Острый угол и перевернутые треугольники

Рассмотрим треугольники $ABC$ и $AMN$. Угол $A$ у них общий; углы [angle ABC=angle AMN=90{}^circ ] по условию. Следовательно, треугольники $ABC$ и $AMN$ подобны по двум углам:

[Delta ABCsim Delta AMN]

Из подобия треугольников следует двойное равенство

[frac{AB}{AM}=frac{BC}{MN}=frac{AC}{AN}]

Выпишем второе равенство — получим пропорцию

[frac{BC}{MN}=frac{AC}{AN}]

Попробуем выразить $sin alpha $. Вспомним основное свойство пропорции: произведение крайних членов равно произведению средних. Поэтому

[BCcdot AN=MNcdot AC]

Разделим обе части равенства на длину каждой гипотенузы — $AN$ и $AC$:

[begin{align}frac{BCcdot AN}{ANcdot AC} &=frac{MNcdot AC}{ANcdot AC} \ frac{BC}{AC} &=frac{MN}{AN} end{align}]

Однако по определению синуса имеем:

[begin{align}sin BAC &=frac{BC}{AC} \ sin MAN &=frac{MN}{AN} \ end{align}]

Получается, что $sin BAC=sin MAN$. Другими словами, вне зависимости от выбора треугольника для данного угла $alpha $ мы всегда будем получать одно и то же значение $sin alpha $.

То же самое касается и $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ — они зависят лишь от градусной меры угла $alpha $ и никак не зависят от конкретного прямоугольного треугольника, в котором они находятся. Теорема доказана.

3. Стандартные углы

Итак, значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ однозначно определяются величиной угла $alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.

Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:

  1. Для большинства углов $alpha $ нельзя найти точные значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
  2. Верно и обратное: для большинства «красивых» $sin alpha $, $cos alpha $ и т.д. нельзя подобрать подходящий угол $alpha $.

Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.

3.1. Три стандартных угла

Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:

[begin{array}{c|ccc} alpha& 30{}^circ& 45{}^circ & 60{}^circ \ hlinesin alpha & frac{1}{2} & frac{sqrt{2}}{2} & frac{sqrt{3}}{2} \ cos alpha & frac{sqrt{3}}{2} & frac{sqrt{2}}{2} & frac{1}{2} \ operatorname{tg}alpha& frac{sqrt{3}}{3} & 1 & sqrt{3} \ end{array}]

Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $alpha =45{}^circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:

Равнобедренный прямоугольный треугольник тригонометрия

Поскольку в равнобедренном треугольнике $angle A=angle B=45{}^circ $, получим:

[begin{align}sin 45{}^circ &=sin A=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos 45{}^circ &=sin A=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}45{}^circ&=sin A=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Это именно те значения, которые указаны в таблице!

Теперь разберёмся с углами $alpha =30{}^circ $ и $alpha =60{}^circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:

Равносторонний треугольник тригонометрия

Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $angle ABH=angle CBH=30{}^circ $.

Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=sqrt{3}$. Нанесём все данные на чертёж:

Равносторонний треугольник высота

Разберёмся с углом 60°:

[begin{align} sin{60}^circ &=sin A=frac{BH}{AB}=frac{sqrt{3}}{2} \ cos{60}^circ&=cos A=frac{AH}{AB}=frac{1}{2} \ operatorname{tg}{60}^circ&=operatorname{tg}A=frac{BH}{AH}=sqrt{3} \ end{align}]

И с углом 30°:

[begin{align} sin{30}^circ &=sin ABH=frac{AH}{AB} =frac{1}{2} \ cos{30}^circ &=cos ABH=frac{BH}{AB} =frac{sqrt{3}}{2} \ operatorname{tg}{30}^circ &=operatorname{tg} ABH=frac{AH}{BH} =frac{1}{sqrt{3}} =frac{sqrt{3}}{3} \ end{align}]

Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!

Возникает вопрос: как быть с другими углами? Например, можно ли найти $sin {50}^circ $? Или, быть может, $cos {10}^circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.

Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?

3.2. Что с другими углами?

Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:

Стандартная пифагорова тройка

Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $alpha $:

[sin alpha =sin A=frac{BC}{AB}=frac{3}{5}=0,6]

Итак, мы знаем синус. Внимание, вопрос: каким должен быть угол $alpha $, чтобы $sin alpha =0,6$? Сколько градусов должно быть в угле $alpha $? Ответ: неизвестно.:)

Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $alpha $, чтобы $sin alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.

Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:

  • Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
  • Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.

Ещё раз:

Мы можем посчитать лишь синус, косинус и тангенс для трёх табличных углов.

Например, $sin 30{}^circ $, $cos 45{}^circ $, $operatorname{tg}60{}^circ $ и т.д. А всякие $sin 15{}^circ $, $cos 25{}^circ $ или $operatorname{tg}89,5{}^circ $ — не сможем. По крайней мере пока.:)

И наоборот:

Зная $sin alpha $, $cos alpha $ или $operatorname{tg}alpha $, мы сможем назвать точный угол $alpha $ только в том случае, если все эти синусы, косинусы и тангенсы — среди табличных значений.

Например, мы точно знаем, что если $sin alpha =frac{sqrt{2}}{2}$, то $alpha =45{}^circ $. Но когда $sin alpha =0,6$, мы уже не можем назвать угол $alpha $ (хотя всегда можем построить такой угол).

С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.

4. Свойства синуса, косинуса, тангенса

Мы разберём три ключевых свойства:

  1. Связь между синусом, косинусом и тангенсом.
  2. Связь между острыми углами прямоугольного треугольника.
  3. Основное тригонометрическое тождество.

Свойствам 2 и 3 далее в курсе будут посвящены отдельные уроки. Но основные идеи полезно взять на вооружение уже сейчас.

4.1. Связь между синусом, косинусом и тангенсом

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Выразим синус, косинус:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

А теперь выразим тангенс и заметим, что

[operatorname{tg}alpha =frac{a}{b}=frac{a}{c}cdot frac{c}{b}=frac{sin alpha }{cos alpha }]

Точно так же можно выразить и котангенс:

[operatorname{ctg}alpha =frac{b}{a}=frac{b}{c}cdot frac{c}{a}=frac{cos alpha }{sin alpha }]

Более того, сам тангенс и котангенс тоже связаны:

[operatorname{tg}alpha cdot operatorname{ctg}alpha =frac{a}{b}cdot frac{b}{a}=1]

Мы получили три важнейших тригонометрических формулы:

Основные формулы тригонометрии:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha };quad operatorname{ctg}alpha =frac{cos alpha }{sin alpha };quad operatorname{tg}alpha cdot operatorname{ctg}alpha =1]

Эти формулы нужно знать наизусть. И понимать, откуда они берутся.

4.2. Связь между острыми углами

Рассмотрим прямоугольный треугольник $ABC$, где $angle C=90{}^circ $. Пусть градусная мера $angle A=alpha $ градусов:

Острые углы прямоугольного треугольника связь

Мы помним, что сумма острых углов прямоугольного треугольника равна 90°. Поэтому если $angle A=alpha $, то угол $angle B=90{}^circ -alpha $. Но тогда:

[sin alpha =sin A=frac{BC}{AB}=cos B=cos left( 90{}^circ -alpha right)]

То же самое и с косинусами:

[cos alpha =cos A=frac{AC}{AB}=sin B=sin left( 90{}^circ -alpha right)]

И даже с тангенсами и котангенсами:

[begin{align} operatorname{tg}alpha&=operatorname{tg}A=frac{BC}{AC} =operatorname{ctg}B=operatorname{ctg}left( {90}^circ -alpharight) \ operatorname{ctg}alpha&=operatorname{ctg}A=frac{AC}{BC} = operatorname{tg}B=tgleft( {90}^circ -alpha right) \ end{align}]

Другими словами, если вместо $alpha $ поставить ${90}^circ -alpha $, то исходная тригонометрическая функция поменяется на ко-функцию:

[begin{align}sin left( {90}^circ-alpharight) &=cos alpha \ cos left( {90}^circ-alpharight) &=sin alpha \ operatorname{tg}left( {90}^circ-alpharight) &=operatorname{ctg}alpha\ operatorname{ctg}left( {90}^circ-alpharight) &=operatorname{tg}alphaend{align}]

Но это ещё не всё. Есть гораздо более интересная формула.

4.3. Основное тригонометрическое тождество

Вновь рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Запишем выражения для $sin alpha $ и $cos alpha $:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

Далее заметим, что

[begin{align} {{sin }^{2}}alpha +{{cos }^{2}}alpha&={{left( frac{a}{c} right)}^{2}}+{{left( frac{b}{c} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{c}^{2}}} +frac{{{b}^{2}}}{{{c}^{2}}}= \ & =frac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}} end{align}]

В числителе можем применить теорему Пифагора: ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, поэтому

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =frac{{{c}^{2}}}{{{c}^{2}}}=1]

Правая часть этой формулы вообще не зависит от угла $alpha $.

Основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Это равенство связывает синус и косинус одного и того же угла и верно для всех $alpha $.

С помощью основного тригонометрического тождества можно вычислять косинус, зная синус, и наоборот.

Задача 7. Найдите $18cos alpha $ для острого угла $alpha $, если $sin alpha =frac{sqrt{65}}{9}$.

Решение. Запишем основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Подставим указанное значение $sin alpha $ и выразим $cos alpha $:

[begin{align}{{left( frac{sqrt{65}}{9} right)}^{2}}+{{cos }^{2}}alpha &=1 \ frac{65}{81}+{{cos }^{2}}alpha &=1 \ {{cos }^{2}}alpha &=frac{16}{81} \ cos alpha&=pm frac{4}{9} end{align}]

Поскольку косинус угла в прямоугольном треугольнике не может быть отрицательным, выбираем вариант $cos alpha ={4}/{9};$. Остаётся сделать финальный шаг:

[18cos alpha =18cdot frac{4}{9}=2cdot 4=8]

Вот и всё! Ответ: 8.

В следующем примере мы уже не будем подробно расписывать каждый шаг. Оформим всё так, как надо оформлять на контрольных и экзаменах.

Задача 8. Найдите $48operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{8}{sqrt{113}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-{{left( frac{8}{sqrt{113}} right)}^{2}}= \ & =1-frac{64}{113}=frac{49}{113} \ sin alpha&=pm frac{7}{sqrt{113}} end{align}]

Но ${0}^circ lt alpha lt {90}^circ $, поэтому $sin alpha gt 0$. Следовательно

[sin alpha =frac{7}{sqrt{113}}]

Найдём $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{7}{sqrt{113}}cdot frac{sqrt{113}}{8}=frac{7}{8}]

Окончательный ответ:

[48operatorname{tg}alpha =48cdot frac{7}{8}=6cdot 7=42]

Ответ: 42.

Заметка на будущее: замечание о том, что угол $alpha $ острый, весьма существенно. То, как мы сейчас определяем синусы, косинусы и тангенсы (через прямоугольный треугольник), называется геометрической тригонометрией. Её проходят в 8—9 классе.

Но в 10—11 классах появится алгебраическая тригонометрия, где синусы, косинусы и т.д. вполне могут быть отрицательными. И уже не получится просто так избавиться от минуса.

Но всё это будет чуть позже. А сейчас потренируемся.

Задача 9. ►

Найдите $52cos alpha $ для острого угла $alpha $, если $sin alpha =frac{5}{13}$.

Решение. Найдём $cos alpha $:

[begin{align}{{cos }^{2}}alpha &=1-{{sin }^{2}}alpha = \ &=1-frac{25}{169}=frac{144}{169} \ cos alpha&=pm frac{12}{13} end{align}]

Поскольку $cos alpha gt 0$ для острых $alpha $, выбираем $cos alpha ={12}/{13};$. Итого

[52cos alpha =52cdot frac{12}{13}=48]

Ответ: 48.

Задача 10. ►

Найдите $1+2operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{1}{sqrt{26}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-frac{1}{26}=frac{25}{26} \ sin alpha&=pm frac{5}{sqrt{26}} end{align}]

Поскольку $sin alpha gt 0$ для острых $alpha $, выбираем

[sin alpha =frac{5}{sqrt{26}}]

Считаем $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{5}{sqrt{26}}cdot frac{sqrt{26}}{1}=5]

Откуда

[1+2operatorname{tg}alpha =1+2cdot 5=11]

Ответ: 11.

5. Тригонометрия на координатной сетке

Задачи, которые мы сейчас разберём, вполне могут встретиться в ОГЭ и даже ЕГЭ. Часто в них нет прямоугольного треугольника — есть лишь угол, в который этот треугольник предлагается вписать.

Для решения задач на координатной сетке достаточно посмотреть, через какие узлы сетки проходят интересующие нас лучи. И понять, какие из этих узлов имеет смысл соединить дополнительными построениями.

Звучит страшно, но на практике всё легко.:)

Задача 11. Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол

Решение. Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ на луч $BC$.

Координатная сетка прямоугольный треугольник

Треугольник $BAH$ — прямоугольный, причём угол $ABC$ — один из его острых углов. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{3}{4}=0,75]

Это и есть искомый тангенс.

Ответ: 0,75.

Ещё раз: важно, чтобы основание перпендикуляра попадало в узел сетки. Иначе нахождение длины катетов резко усложняется. Попробуйте сами:

Задача 12. ►

Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол самостоятельно

Решение.

Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ к лучу $BC$.

Координатная сетка треугольник самостоятельно

Треугольник $BAH$ — прямоугольный с острым углом $ABC$. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{2}{4}=frac{1}{2}]

Ответ: 0,5.

Разумеется, это были совсем простые задачи. Потому что один из лучей был параллелен линиям сетки.

Куда интереснее (и полезнее) рассмотреть ситуации, где лучи направлены под углом к сетке. Суть та же: ищем и соединяем узлы на лучах. Но тут уже нужна наблюдательность.

Задача 13. Найдите тангенс угла $MNK$, изображённого на координатной сетке:

Координатная сетка наклон

Решение. Луч $KN$ содержит лишь две точки в узлах координатной сетки — собственно, $K$ и $N$. Понятно, что если продолжить луч за точку $K$, мы найдём ещё много таких точек, но будем решать задачу с тем, что есть.

Заметим, что прямая $MN$ наклонена к линиям сетки под углом 45° и образует диагонали квадратов. Это значит, что перпендикуляр к ней тоже будет наклонён под углом 45°.

Дополнительное построение: отрезок $KH$ — диагональ одного из квадратов сетки.

Координатная сетка наклон высота

Очевидно, что угол $NHK$ прямой, поэтому треугольник $KHN$ прямоугольный и содержит искомый острый угол $MNK$. Находим тангенс:

[operatorname{tg}MNK=frac{HK}{HN}=frac{sqrt{2}}{2sqrt{2}}=frac{1}{2}=0,5]

Здесь мы предположили, что сторона квадрата сетки равна 1. Но с тем же успехом можно считать, что сторона квадрата $a$:

[operatorname{tg}MNK=frac{HK}{HN}=frac{asqrt{2}}{2asqrt{2}}=frac{1}{2}=0,5]

Ответ: 0,5.

Подобные задачи считаются довольно сложными. По статистике большинство выпускников 9 классов не способны их решать. Но вы-то теперь точно справитесь. Попробуйте:

Задача 14. ►

Найдите тангенс угла $DEF$, изображённого на координатной сетке:

Координатная сетка наклон самостоятельно

Решение.

Дополнительное построение: отрезок $DH$.

Координатная сетка наклон высота самостоятельно

Очевидно, $EH=DH$, угол $EHD$ прямой. Следовательно, треугольник $EDH$ — прямоугольный и равнобедренный. Поэтому $operatorname{tg}DEF=1$.

Либо можно посчитать «напролом», полагая, что сторона квадрата сетки равна $a$:

[operatorname{tg}DEF=frac{asqrt{10}}{asqrt{10}}=1]

Ответ: 1.

Вообще, поиск «правильных» узлов на координатной сетке — это своего рода искусство. И если углубляться в эту тему, то можно быстро выйти на «полуолимпиадные» задачи.

К тому же не существует «самого правильного» дополнительного построения. Задачу на координатной сетке всегда можно решить множеством различных способов. Так, в последнем примере можно было провести перпендикуляр вот так:

Координатная сетка второе решение

И даже так (хотя вряд ли этот способ можно назвать рациональным):

Координатная сетка третье решение

Во всех случаях ответ будет один и тот же. Поэтому не бойтесь экспериментировать. И переходите к следующему уроку — к действительно важным и полезным свойствам синусов, косинусов, тангенсов и котангенсов.:)

Смотрите также:

  1. Радианная и градусная мера угла
  2. Как быстро запомнить таблицу синусов и косинусов
  3. Сложные логарифмические неравенства
  4. Сложные выражения с дробями. Порядок действий
  5. Задача B5: площадь фигур с вершиной в начале координат
  6. Обход точек в стереометрии — 2

subjects:mathematics:тригонометрические_выражения_и_формулы

Содержание

Тригонометрические выражения и тригонометрические формулы

Отметим на координатной оси Ох справа от точки О точку А и построим окружность с центром в точке О и радиусом ОА (так называемым начальным радиусом).

Единичный круг

Окружность с центром в точке О и радиусом ОА

Рис.1

Пусть при повороте на угол a против часовой стрелки начальный радиус ОА переходит в радиус ОВ.

Тогда:

  • Синусом (sin α) угла α называется отношение ординаты точки В к длине радиуса.

  • Косинусом (cos α) угла α называется отношение абсциссы точки В к длине радиуса.

  • Тангенсом (tg α) угла α называется отношение ординаты точки В к ее абсциссе.

  • Котангенсом (ctg α) угла α называется отношение абсциссы точки В к ее ординате.

  • Секанс определяется как sec α = 1/(cos α)

  • Косеканс определяется как cosec α = 1/(sin α)

  • В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x

Если координаты точки В равны x и y, то:

$$sin{alpha} = frac{y}{R};;; cos{alpha} = frac{x}{R};;; {rm tg}, alpha = frac{y}{x};;; {rm ctg}, alpha = frac{x}{y}$$

Таблица значений sin α, cos α, tg α, ctg α

Приведем таблицу значений тригонометрических функций некоторых углов (прочерк сделан, когда выражение не имеет смысла):

Таблица значений sin α, cos α, tg α, ctg α
30º 45º 60º 90º 180º 270º 360º
0 рад $frac{pi}{6}$ $frac{pi}{4}$ $frac{pi}{3}$ $frac{pi}{2}$ $pi$ $frac{3pi}{2}$ $2pi$
$sin alpha$ 0 $frac{1}{2}$ $frac{sqrt{2}}{2}$ $frac{sqrt{3}}{2}$ 1 0 -1 0
$cos alpha$ 1 $frac{sqrt{3}}{2}$ $frac{sqrt{2}}{2}$ $frac{1}{2}$ 0 -1 0 1
$textrm{tg}, alpha$ 0 $frac{1}{sqrt{3}}$ 1 $sqrt{3}$ 0 0
$textrm{ctg}, alpha$ $sqrt{3}$ 1 $frac{1}{sqrt{3}}$ 0 0

Свойства sin, cos, tg и ctg

Свойства синуса (sin), косинуса (cos), тангенса(tg) и котангенса(ctg):

  1. Определение знака

    • Если α-угол I или II координатной четверти, то sin α > 0;

    • Если α-угол III или IV координатной четверти, то sin α < 0;

    • Если α-угол I или IV координатной четверти, то cos α > 0;

    • Если α-угол II или III координатной четверти, то cos α < 0;

    • Если α-угол I или III координатной четверти, то tg α > 0 и ctg α > 0;

    • Если α-угол II или IV координатной четверти, то tg α < 0 и ctg α < 0.

  2. Синус, тангенс и котангенс — нечетные функции; косинус — четная функция.

    • Для чётной функции справедливо равенство: y(-x) = y(x). Примеры чётных функций: y = cos(x), y = x2.

    • Для НЕчётной функции справедливо равенство: y(-x) = -y(x). Примеры НЕчётных функций: y = sin(x), y = x.

  3. При изменении угла на целое число оборотов значения тригонометрических функций не меняются.

    • У sin α и cos α период – $2pi$ или 360°.

    • У tg α и ctg α – $pi$.

1 радиан — это мера центрального угла, которому соответствует длина дуги, равная длине радиуса окружности.

Связь радианов с градусами: $1° =frac{pi}{180}text{рад; 1 рад }=frac{180°}{pi}$.

Основные тригонометрические тождества

Основные тригонометрические тождества

Формулы приведения

X $frac{pi}{2}-alpha$ $frac{pi}{2}+alpha$ $pi-alpha$ $pi+alpha$ $frac{3pi}{2}-alpha$ $frac{3pi}{2}+alpha$ $2pi-alpha$ $2pi+alpha$
sin x cos α cos α sin α -sin α -cos α -cos α -sin α sin α
cos x sin α -sin α -cos α -cos α -sin α sin α cos α cos α
tg x ctg α -ctg α -tg α tg α ctg α -ctg α -tg α tg α
ctg x tg α -tg α -ctg α ctg α tg α -tg α -ctg α ctg α

Формулы сложения

Формулы сложения

Формулы двойного угла

Формулы двойного угла или двойного аргумента:

Формулы двойного угла

Формулы половинного аргумента

Формулы половинного аргумента (для sin и cos — формулы понижения степени):

Формулы половинного аргумента

Формулы суммы и разности

Формулы суммы и разности тригонометрических функций

Формулы произведения

Формулы произведения

Соотношения между sin x, cos x и tg(x/2)

Один из способов использования: свести всё к tg(x/2) и путём замены получить обычное алгебраическое выражение.

Соотношения между sin x, cos x и tg(x/2)

Простейшие тригонометрические уравнения

Простейшие тригонометрические уравнения

Дополнительно

subjects/mathematics/тригонометрические_выражения_и_формулы.txt

· Последние изменения: 2021/03/24 18:37 —

В данном материале, мы изучим основное определение тригонометрии, какие свойства ей характерны, применение в математике, приведем примеры решения уравнений.

Определение

Тригонометрия — это раздел алгебры, в котором изучаются тригонометрические функции и их применение.

В математике применяются основные определения, связанные с тригонометрией, а именно:

  • синус — соотношение стороны противолежащего катета к стороне гипотенузы, (sin);
  • косинус — это прилежащая сторона катет к гипотенузе, обозначается как (cos);
  • тангенс — отношение стороны противолежащего катета к стороне прилежащего, (tg);
  • котангенс — отношение прилежащей стороны катета к противолежащей (это значение, обратное значению тангенса), обозначается как (ctg).

В науке чаще всего применяются два основных вида функций: прямые и косвенные, реже обратные функции.

Стоит выделить главные тригонометрические тождества, существующие в математике:

[ sin ^{2 alpha}+cos ^{2} alpha=1; ]

[ tan alpha=frac{sin alpha}{cos alpha}; ]

[ cot alpha=frac{cos alpha}{sin alpha}; ]

[ tan alpha cdot cot alpha=1; ]

[tan ^{2} alpha+1=frac{1}{cos ^{2} alpha};]

[cot ^{2} alpha+1=frac{1}{sin ^{2} alpha}.]

Применим основные формулы тригонометрии, решая задачи.

Пример:

Известно: cosα=0.8;

Необходимо определить: косинус, тангенс, котангенс, соответствующего угла a.

Решение:

Для определения значения косинуса в квадрате, возводим число 0,8 в квадрат и вычисляем синус. Полученное значение подставляем в формулу и можем определить тангенс угла 0,8. Таким же методом, вычисляем котангенс.

Решение довольно простое и особых сложней не вызывает.

Основные тригонометрические тождества формул приведения

Формулы помогают, преобразовать основные тождества и перейти к вычислению углов в пределах 90 градусов. Это очень удобно, не только в алгебре, но и во всей математике.

Существует два основных способа, использования формул приведения:

  • Если угол можно записать как (π/2 ±α) или (3*π/2 ±α), то название функции меняется с  косинуса на определение синус, тангенс, в свою очередь на котангенс, либо наоборот. Если же угол можно представить в виде (π±α) или (2*π±α), то название функции не меняется.
  • Обозначение приведенного уравнения не изменяется. Если изначально функция была со знаком «+», тогда и приведенная функция будет со знаком «+», с отрицательным знаком тоже самое.

Формулы приведения, примеры:

Формулы приведения пример 1 Формулы приведения пример 2

При расчетах очень часто возникают трудности при вычислении больших значений степеней. Для этого в тригонометрии, существует такое понятие как понижение значения степени.

Тождества понижения степени, помогают справиться с этой непростой задачей. Они выражают степень sin и cos через sin и cos первой степени, но определенного кратного угла. Поэтому, тригонометрические уравнения  снижают степень первоначальных функций с определенной до первой степени, но при этом повышают кратность угла от до n.

Тригонометрические формулы для косинуса и синуса понижения степени, записываются в следующем виде:

Тригонометрические формулы для косинуса и синуса

После преобразования основных формул понижения получаем их общий вид. Рассмотрим на примерах ниже.

Для четных значений уравнения:

Пример решения уравнения 1

Для нечетных значений уравнения:

Пример решения уравнения 2

Применение основных тригонометрических формул для решения уравнений

Тригонометрические тождества можно выражать различным способом, для облегчения решения уравнения.

Рассмотрим характеристики тригонометрических функций для косинуса, синуса, тангенса и котангенса.

а) Сложение и вычитание тригонометрических функций.

Сложение и вычитание тригонометрических функций можно представить как — произведение. Преобразовать на множители косинус или синус, и тем самым упростить процесс вычисления.

Сложение и вычитание тригонометрических функций

б) Произведение тригонометрических функций.

Произведение функций можно вычислить путем сложения и вычитания тождеств.

В свою очередь произведение тригонометрических функций, позволяет вычислить сумму. Эти два действия являются противоположными по отношению к друг другу.

Произведение тригонометрических функций

в) Тригонометрические формулы сложения.

При их применении можно сложение и вычитание углов выразить через тригонометрические функции заданных значений угла.

Тригонометрические формулы сложения

Преобразовав формулы сложения, мы получим тригонометрические уравнения угла.

Нет времени решать самому?

Наши эксперты помогут!

Формулы кратности значения угла

Формулы кратности значения угла

Формулы угла, определяющие половину значения (половинного угла):

Универсальное использование тригонометрических функций

Все изученные математические уравнения в тригонометрии — синус, косинус, тангенс и котангенс — имеют свойство выражаться через тангенс (tg) половинного угла.

Универсальное использование тригонометрических функций

Тригонометрические функции имеют характерные особенности. Они способны преобразовывать основные уравнения и тем самым выражать различные функции. Понижать степень, для удобства расчета и другие полезные действия

Содержание:

Тригонометрические функции

Изучая материал этого параграфа, вы расширите свои знания о тригонометрических функциях и их свойствах, узнаете, что такое радианная мера угла, какие функции называют периодическими.

Ознакомитесь с формулами, связывающими различные тригономет­рические функции, научитесь применять их для выполнения вычислений, упрощения выражений, доказательства тождеств.

Узнаете, какие уравнения называют простейшими тригонометричес­кими уравнениями; ознакомитесь с формулами корней простейших тригонометрических уравнений.

Радианная мера углов

До сих пор для измерения углов вы использовали градусы или части градуса — минуты и секунды.

Во многих случаях удобно пользоваться другой единицей измерения углов. Ее называют радианом.

Определение. Углом в один радиан называют централь­ный угол окружности, опирающийся на дугу, длина которой равна радиусу окружности.

На рисунке 8.1 изображен центральный угол АОВ, опирающий­ся на дугу А В , длина которой равна радиусу окружности. Величина угла АОВ равна одному радиану. Записывают: Тригонометрические функции с примерами решения

Также говорят, что радианная мера дуги АВ равна одному радиану. Записывают: Тригонометрические функции с примерами решения

Радианная мера угла (дуги) не зависит от радиуса окружности. Это утверждение проиллюстрировано на рисунке 8.2.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

На рисунке 8.3 изображены окружность радиуса R и дуга MN, длина которой равна Тригонометрические функции с примерами решения Тогда радианная мера угла MON (дуги MN) равна Тригонометрические функции с примерами решения рад. Вообще, если центральный угол окружности радиуса R опирается на дугу, длина которой равна Тригонометрические функции с примерами решения то говорят, что радианная мера этого центрального угла равна Тригонометрические функции с примерами решения рад. Длина полуокружности равна Тригонометрические функции с примерами решения Следовательно, радианная мера полуокружности равна Тригонометрические функции с примерами решения рад. Градусная мера полуокружности составляет 180°. Сказанное позволяет установить связь между ра­дианной и градусной мерами, а именно: Тригонометрические функции с примерами решения (1) Отсюда

Тригонометрические функции с примерами решения

Разделив 180 на 3,14 (напомним, что Тригонометрические функции с примерами решения), можно установить: 1 рад Тригонометрические функции с примерами решения Если обе части равенства (1) разделить на 180, то получим:

Тригонометрические функции с примерами решения (2)

Из этого равенства легко установить, что, например, 15° = 15—— рад = — рад, 90° = Тригонометрические функции с примерами решения Обычно при записи радианной меры угла обозначение «рад» опускают. Например, записывают: Тригонометрические функции с примерами решения В таблице приведены градусные и радианные меры часто встречающихся углов:

Тригонометрические функции с примерами решения

Используя радианную меру угла, можно получить удобную формулу для вычисления длины дуги окружности. Поскольку центральный угол в 1 рад опирается на дугу, длина которой равна радиусу Тригонометрические функции с примерами решения, то угол в Тригонометрические функции с примерами решения рад опирается на дугу, длина которой равна Тригонометрические функции с примерами решения. Если длину дуги, содержащей Тригонометрические функции с примерами решения рад, обозначить через Тригонометрические функции с примерами решения, то можно записать:

Тригонометрические функции с примерами решения

На координатной плоскости рассмотрим окружность единично­го радиуса с центром в начале координат. Такую окружность называют единичной. Пусть точка Тригонометрические функции с примерами решения, начиная движение от точки Тригонометрические функции с примерами решения, перемещается по единичной окружности против часовой стрелки. В некоторый момент времени она займет положение, при котором Тригонометрические функции с примерами решения(рис. 8.4). Будем говорить, что точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения (на угол 1200)

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Пусть теперь точка Тригонометрические функции с примерами решения переместилась по единичной окружности по часовой стрелке и заняла положение, при котором Тригонометрические функции с примерами решения (рис. 8.5). Будем говорить, что точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения.

Вообще, когда рассматривают движение точки по окружности против часовой стрелки (рис. 8.4), то угол поворота считают положительным, а когда по часовой стрелке (рис. 8.5) — то отрицательным.

Рассмотрим еще несколько примеров. Обратимся к рисунку 8.6.

Тригонометрические функции с примерами решения

Можно сказать, что точка А получена в результате поворота точки Тригонометрические функции с примерами решениявокруг начала координат на угол Тригонометрические функции с примерами решения(на угол 90°) или на угол Тригонометрические функции с примерами решения (на угол -270°). Точка В получена в результате поворота точки Тригонометрические функции с примерами решения на угол Тригонометрические функции с примерами решения (на угол 180°) или на угол Тригонометрические функции с примерами решения (на угол -180°). Точка С получена в результате поворота точки Тригонометрические функции с примерами решения. на угол Тригонометрические функции с примерами решения (на угол 270°) или на угол Тригонометрические функции с примерами решения(на угол -90°).

Если точка Тригонометрические функции с примерами решения, двигаясь по единичной окружности, сделает один полный оборот, то можно сказать, что угол поворота равен Тригонометрические функции с примерами решения (то есть 360°) или Тригонометрические функции с примерами решения (то есть -360°).

Если точка Тригонометрические функции с примерами решения сделает полтора оборота против часовой стрелки, то естественно считать, что угол поворота равен Тригонометрические функции с примерами решения (то есть 540°), если по часовой стрелке — то Тригонометрические функции с примерами решения (то есть -540°).

Величина угла поворота как в радианах, так и в градусах может выражаться любым действительным числом.

Угол поворота однозначно определяет положение точки Тригонометрические функции с примерами решения на единичной окружности. Однако любому положению точки Тригонометрические функции с примерами решения на окружности соответствует бесконечно много углов поворота. Например, точке Тригонометрические функции с примерами решения (рис. 8.7) соответствуют такие углы поворота: Тригонометрические функции с примерами решения и т.д., а также Тригонометрические функции с примерами решенияи т.д. Заметим, что все эти углы можно получить с помощью формулы Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции числового аргумента

В 9 классе, вводя определения тригонометрических функций углов от 0° до 180°, мы пользовались единичной полуокружностью. Обобщим эти определения для произвольного угла поворота Тригонометрические функции с примерами решения. Рассмотрим единичную окружность (рис. 9.1).

Тригонометрические функции с примерами решения

Определение. Косинусом и синусом угла поворота Тригонометрические функции с примерами решения называют соответственно абсциссу Тригонометрические функции с примерами решения и ординату у точки Тригонометрические функции с примерами решения единичной окружности, полученной в результате поворота точки Тригонометрические функции с примерами решения(1; 0) вокруг начала координат на угол Тригонометрические функции с примерами решения (рис. 9.1).

Записывают: Тригонометрические функции с примерами решения Точки Тригонометрические функции с примерами решения, А, В и С (рис. 9.2) имеют соответственно координаты (1; 0), (0; 1), (-1; 0), (0; -1). Эти точки получены в результате по­ворота точки Тригонометрические функции с примерами решения. (1; 0) соответственно на углы Тригонометрические функции с примерами решения Теперь, пользуясь данным определением, можно составить следующую таблицу1:

Тригонометрические функции с примерами решения

Пример:

Найдите все углы поворота Тригонометрические функции с примерами решения, при которых: 1) sin Тригонометрические функции с примерами решения = 0; 2) cos Тригонометрические функции с примерами решения = 0.

Решение:

1) Ординату, равную нулю, имеют только две точки единичной окружности: Тригонометрические функции с примерами решения и В (рис. 9.2). Эти точки получены в результате поворотов точки Тригонометрические функции с примерами решения на такие углы:

Тригонометрические функции с примерами решения . Все эти углы можно записать с помощью формулы Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. Следовательно, sin Тригонометрические функции с примерами решения = 0 при Тригонометрические функции с примерами решения = Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения

2) Абсциссу, равную нулю, имеют только две точки единичной окружности: А и С (рис. 9.2). Эти точки получены в результате поворотов точки Тригонометрические функции с примерами решения на такие углы:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Все эти углы можно записать с помощью формулы Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. Следовательно, Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

1 На форзаце 3 приведена таблица значений тригонометрических функций некоторых углов.

Определение. Тангенсом угла поворота а называют отно­шение синуса этого угла к его косинусу:

Тригонометрические функции с примерами решения

Например, Тригонометрические функции с примерами решения

Из определения тангенса следует, что тангенс определен для тех углов поворота Тригонометрические функции с примерами решения, для которых cos Тригонометрические функции с примерами решения, то есть при Тригонометрические функции с примерами решения.

Вы знаете, что каждому углу поворота Тригонометрические функции с примерами решения соответствует единственная точка единичной окружности. Следовательно, каждому значению угла Тригонометрические функции с примерами решения соответствует единственное число, являющееся значением синуса (косинуса, тангенса для Тригонометрические функции с примерами решения) угла Тригонометрические функции с примерами решения.

Поэтому зависимость значения синуса (косинуса, тангенса) от величины угла поворота является функциональной.

Функции Тригонометрические функции с примерами решения, соответствующие этим функциональным зависимостям, называют тригонометрическими функциями угла поворота Тригонометрические функции с примерами решения.

Каждому действительному числу Тригонометрические функции с примерами решения поставим в соответствие угол Тригонометрические функции с примерами решения рад. Это позволяет рассматривать тригонометрические функции числового аргумента. Например, запись «sin 2» означает «синус угла в 2 радиана». Из определений синуса и косинуса следует, что областью определения функций у = sin X и у = cos х является множество R.

Поскольку абсциссы и ординаты точек единичной окружности принимают все значения от -1 до 1 включительно, то областью значений функций у = sin х и у = cos х является промежуток [-1; 1].

Углам поворота Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, соответствует одна и та же точка единичной окружности, поэтому

Тригонометрические функции с примерами решения

Область определения функции Тригонометрические функции с примерами решения состоит из всех действи­тельных чисел, кроме чисел вида Тригонометрические функции с примерами решения. Областью значений функции Тригонометрические функции с примерами решения является множество Тригонометрические функции с примерами решения.

Можно доказать, что справедлива следующая формула:

Тригонометрические функции с примерами решения

Пример:

Найдите наибольшее и наименьшее значения вы­ражения Тригонометрические функции с примерами решения.

Решение:

Поскольку Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения. Следовательно, наименьшее значение данного выражения равно -3; выражение принимает его при Тригонометрические функции с примерами решения. Наибольшее значение данного выражения равно 5; выражение принимает его при Тригонометрические функции с примерами решения.

Знаки значений тригонометрических функций. Четность и нечетность тригонометрических функций

Пусть точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения (1; 0) вокруг начала координат на угол Тригонометрические функции с примерами решения. Если точка Р принадлежит I координатной четверти, то говорят, что Тригонометрические функции с примерами решения является углом I четверти. Аналогично можно говорить об углах II, III и IV четвертей.

Например, Тригонометрические функции с примерами решения и -300° — углы I четверти, Тригонометрические функции с примерами решения и -185° — углы II четверти, Тригонометрические функции с примерами решения и -96° — углы III четверти, 355° и — углы IV четверти. Углы вида Тригонометрические функции с примерами решения, не относят ни к какой четверти.

Точки, расположенные в I четверти, имеют положительные абсциссу и ординату. Следовательно, если Тригонометрические функции с примерами решения — угол I четверти, то Тригонометрические функции с примерами решения.

  • Если а — угол II четверти, то sin а > 0, cos а < 0.
  • Если а — угол III четверти, то sin а < 0, cos а < 0.
  • Если а — угол IV четверти, то sin а < 0, cos а > 0.

Знаки значений синуса и косинуса схематически показаны на рисунке 10.1.

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения , то тангенсы углов I и III четвертей являются положительными, а углов II и IV четвертей — отрицательными (рис. 10.2). Пусть точки Тригонометрические функции с примерами решения получены в результате поворота точки Тригонометрические функции с примерами решения (1; 0) на углы Тригонометрические функции с примерами решения и —Тригонометрические функции с примерами решения соответственно (рис. 10.3).

Тригонометрические функции с примерами решения

Для любого угла Тригонометрические функции с примерами решения точки Тригонометрические функции с примерами решения имеют равные абсциссы и противоположные ординаты. Тогда из определений синуса и косинуса следует, что для любого действительного числа Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Это означает, что функция косинус является четной, а функция синус — нечетной.

Область определения функции Тригонометрические функции с примерами решения симметрична относительно начала координат (проверьте это самостоятельно). Кроме того: Тригонометрические функции с примерами решения

Следовательно, функция тангенс является нечетной.

Пример:

Какой знак имеет: 1) sin 280°; 2)tg(-140°)?

Решение:

1) Поскольку угол 280° является углом IV четверти, то sin 280° < 0.

2) Поскольку угол -140° является углом III четверти, то tg(-140°) > 0.

Пример:

Сравните sin 200° и sin (-200°).

Решение:

Поскольку угол 200° — угол III четверти, угол -200° — угол II четверти, то sin 200° < 0, sin (-200°) > 0. Следова­тельно, sin 200° < sin (-200°).

Пример:

Исследуйте на четность функцию: 1) Тригонометрические функции с примерами решения • 2)Тригонометрические функции с примерами решения.

Решение:

1) Область определения данной функции, D(f) = Тригонометрические функции с примерами решения, симметрична относительно начала координат.

Имеем:

Тригонометрические функции с примерами решения

Следовательно, рассматриваемая функция является четной.

2) Область определения данной функции, Тригонометрические функции с примерами решения, сим­метрична относительно начала координат. Запишем:

Тригонометрические функции с примерами решения Поскольку ни одно из равенств Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения не выполняется для всех Тригонометрические функции с примерами решения из области определения, то рассматриваемая функция не является ни четной, ни нечетной.

Свойства и графики тригонометрических функций

Вы знаете, что для любого числа х выполняются равенства

Тригонометрические функции с примерами решения Это указывает на то, что значения функций синус и косинус периодически повторяются при изменении аргумента на Тригонометрические функции с примерами решения. Функ­ции Тригонометрические функции с примерами решения являются примерами периодических функ­ций.

Определение. Функцию Тригонометрические функции с примерами решения называют периодической, если существует такое число Тригонометрические функции с примерами решения, что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства Тригонометрические функции с примерами решения Число Т называют периодом функции Тригонометрические функции с примерами решения.

Вы знаете, что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства

Тригонометрические функции с примерами решения Тогда из определения периодической функции следует, что тангенс является периодической функцией с периодом Тригонометрические функции с примерами решения.

Можно показать, что если функция Тригонометрические функции с примерами решения имеет период Тригонометрические функции с примерами решения, то любое из чисел Тригонометрические функции с примерами решения…. а также любое из чисел Тригонометрические функции с примерами решения… также является ее периодом. Из этого свойства следует, что каждая периодическая функция имеет бесконечно много периодов.

Например, любое число вида Тригонометрические функции с примерами решения является периодом функций у = sin х и у = cos х; а любое число вида Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения является периодом функции Тригонометрические функции с примерами решения

Если среди всех периодов функции f существует наименьший положительный период, то его называют главным периодом функции f.

Теорем а 11.1. Главным периодом функций Тригонометрические функции с примерами решения является число Тригонометрические функции с примерами решения; главным периодом функции Тригонометрические функции с примерами решения — число Тригонометрические функции с примерами решения.

Пример:

Найдите значение выражения:

1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения 3) Тригонометрические функции с примерами решения

Решение:

1)Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

2) Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

3) Тригонометрические функции с примерами решения

На рисунке 11.1 изображен график некоторой периодической функции Тригонометрические функции с примерами решения с периодом Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Фрагменты графика этой функции на промежутках [0; Т], [Т; 2Т], [2Т; ЗТ] и т. д., а также на промежутках [-Т ; 0], [-2Т; -Т ], [-ЗТ ; -2Т] и т. д. являются равными фигурами, причем любую из этих фигур можно получить из любой другой параллельным переносом на вектор с координатами Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения— некоторое целое число.

Пример:

На рисунке 11.2 изображен фрагмент графика периодической функции, период которой равен Т. Постройте график этой функции на промежутке Тригонометрические функции с примерами решения.

Решение:

Построим образы изображенной фигуры, полученные в результате параллельного переноса на векторы с координатами (Т; 0), (2Т; 0) и (-Т; 0). Объединение данной фигуры и полученных образов — искомый график (рис. 11.3).

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

При повороте точки Тригонометрические функции с примерами решения вокруг начала координат на углы от 0 до Тригонометрические функции с примерами решения большему углу поворота соответствует точка единичной окружности с большей ординатой (рис. 11.4). Это означает, что функция Тригонометрические функции с примерами решения возрастает на промежутке Тригонометрические функции с примерами решения. При повороте точки Тригонометрические функции с примерами решения на углы от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решения большему углу поворота соответствует точка единичной окружности с меньшей ординатой (рис. 11.4). Следовательно, функция Тригонометрические функции с примерами решения убывает на промежутке Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

При повороте точки Тригонометрические функции с примерами решения на углы от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решениябольшему углу поворота соответ­ствует точка единичной окружности с большей ординатой (рис. 11.4). Следовательно, функция Тригонометрические функции с примерами решения возрастает на промежутке Тригонометрические функции с примерами решения. Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения имеет три нуля: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения достигает наибольшего значения, равного 1, при Тригонометрические функции с примерами решения и наименьшего значения, равного -1 , при Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решенияна промежутке Тригонометрические функции с примерами решения принимает все значения из промежутка [-1; 1].

Полученные свойства функции Тригонометрические функции с примерами решения позволяют построить ее график на промежутке Тригонометрические функции с примерами решения (рис. 11.5). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых углов, приведенной на форзаце 3.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

На всей области определения график функции Тригонометрические функции с примерами решения можно получить из построенного графика с помощью параллельных переносов на векторы с координатами Тригонометрические функции с примерами решения (рис. 11.6).

График функции Тригонометрические функции с примерами решения называют синусоидой.

Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения называют косинусоидой (рис. 11.8).

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения , то есть на промежутке длиной в период этой функции (напомним, что функция Тригонометрические функции с примерами решения в точках Тригонометрические функции с примерами решения не определена).

Можно показать, что при изменении угла поворота от Тригонометрические функции с примерами решения значения тангенса увеличиваются. Это означает, что функция Тригонометрические функции с примерами решениявозрастает на промежутке Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решенияимеет один нуль: х = 0. Если Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения; если Тригонометрические функции с примерами решения

Полученные свойства функции Тригонометрические функции с примерами решения позволяют построить ее график на промежутке — Тригонометрические функции с примерами решения (рис. 11.9). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых аргументов, приведенной на форзаце 3.

Тригонометрические функции с примерами решения

На всей области определения график функции Тригонометрические функции с примерами решения можно получить из построенного графика с помощью параллельных переносов на векторы с координатами Тригонометрические функции с примерами решения (рис. 11.10).

Тригонометрические функции с примерами решения

В таблице приведены основные свойства тригонометрических функций.

Тригонометрические функции с примерами решения

Пример:

Сравните: 1) Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения.

Решение:

1) Поскольку числа Тригонометрические функции с примерами решенияпринадлежат промежутку Тригонометрические функции с примерами решения на котором функция Тригонометрические функции с примерами решения убывает, и Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения

2) Поскольку углы 324° и 340° принадлежат промежутку [180°; 360°], на котором функция Тригонометрические функции с примерами решения возрастает, и 324° < 340°, то cos 324° < cos 340°.

Основные соотношения между тригонометрическими функциями одного и того же аргумента

В этом пункте установим тождества, связывающие значения тригонометрических функций одного и того же аргумента. Координаты любой точки Тригонометрические функции с примерами решения единичной окружности удовлетворяют уравнению Тригонометрические функции с примерами решения. Поскольку Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — угол поворота, в результате которого из точки Тригонометрические функции с примерами решения была получена точка Тригонометрические функции с примерами решения, то

Тригонометрические функции с примерами решения (1)

Обратим внимание на то, что точка Р на единичной окружности выбрана произвольно, поэтому тождество (1) справедливо для любого Тригонометрические функции с примерами решения. Его называют основным тригонометрическим тождеством.

Используя основное тригонометрическое тождество, найдем зависимость между тангенсом и косинусом.

Пусть Тригонометрические функции с примерами решения. Разделим обе части равенства (1) на Тригонометрические функции с примерами решения. Получим:

Тригонометрические функции с примерами решения

Отсюда

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Упростите выражение:

1) Тригонометрические функции с примерами решения 2 ) Тригонометрические функции с примерами решения

Решение:

1) Тригонометрические функции с примерами решения

2) Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Известно, что Тригонометрические функции с примерами решения Вычислите Тригонометрические функции с примерами решения.

Решение:

Имеем:

Тригонометрические функции с примерами решения

Отсюда Тригонометрические функции с примерами решенияили Тригонометрические функции с примерами решения3 3 Рисунок 12.1 иллюстрирует эту задачу.

Пример:

Найдите Тригонометрические функции с примерами решения , если Тригонометрические функции с примерами решения

Решение:

Имеем:

Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения; следовательно,

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Формулы сложения

Формулами сложения называют формулы, выражающие Тригонометрические функции с примерами решения через тригонометрические функции углов Тригонометрические функции с примерами решения.

Докажем, чтоТригонометрические функции с примерами решения Пусть точки Тригонометрические функции с примерами решения получены в результате поворота точки Тригонометрические функции с примерами решения на углы Тригонометрические функции с примерами решения соответственно.

Рассмотрим случай, когда Тригонометрические функции с примерами решения. Тогда угол между векторамиТригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения (рис. 13.1). Координаты точек Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения соответственно равны Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения. Тогда вектор Тригонометрические функции с примерами решения имеет координаты Тригонометрические функции с примерами решения, а вектор Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Выразим скалярное произведение векторов Тригонометрические функции с примерами решения через их координаты:

Тригонометрические функции с примерами решения В то же время по определению скалярного произведения векторов можно записать:

Тригонометрические функции с примерами решения Отсюда получаем формулу, которую называют косинусом разности:

Тригонометрические функции с примерами решения (1)

Формула (1) справедлива и в том случае, когда Тригонометрические функции с примерами решения Докажем формулу косинуса суммы:

Тригонометрические функции с примерами решения

Имеем: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Формулы синуса суммы и синуса разности имеют вид:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Формулы тангенса суммы и тангенса разности имеют вид:

Тригонометрические функции с примерами решения (2)

Тригонометрические функции с примерами решения (3)

Тождество (2) справедливо для всех Тригонометрические функции с примерами решения, при которых Тригонометрические функции с примерами решения Тождество (3) справедливо для всех Тригонометрические функции с примерами решения, при которых Тригонометрические функции с примерами решения

Формулы, выражающие тригонометрические функции аргумента Тригонометрические функции с примерами решения через тригонометрические функции аргумента а, называют формулами двойного аргумента.

В формулах сложения

Тригонометрические функции с примерами решения

положим Тригонометрические функции с примерами решения Получим:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Эти формулы соответственно называют формулами косинуса, синуса и тангенса двойного аргумента.

Поскольку Тригонометрические функции с примерами решения то из формулы Тригонометрические функции с примерами решения получаем еще две формулы:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Иногда эти формулы удобно использовать в таком виде:

Тригонометрические функции с примерами решения

или в таком виде:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Две последние формулы называют формулами понижения степени.

Пример:

Упростите выражение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Решение:

1) Применяя формулы синуса суммы и синуса разности, получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

2) Заменим данное выражение на синус разности аргументов Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения. Получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Докажите тождество Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Найдите значение выражения Тригонометрические функции с примерами решения.

Решение:

Используя формулу тангенса суммы углов 20° и 25°, получаем: Тригонометрические функции с примерами решения

Пример:

Упростите выражение:

1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения.

Решение:

1) Тригонометрические функции с примерами решения

2)Тригонометрические функции с примерами решения

Формулы приведения

Периодичность тригонометрических функций дает возможность сводить вычисление значений синуса и косинуса к случаю, когда значение аргумента принадлежит промежутку Тригонометрические функции с примерами решения. В этом пункте мы рассмотрим формулы, позволяющие в таких вычислениях I л п ограничиться лишь углами из промежутка Тригонометрические функции с примерами решения

Каждый угол из промежутка Тригонометрические функции с примерами решения можно представить в виде Тригонометрические функции с примерами решения или Тригонометрические функции с примерами решения, или Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения. Например, Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Вычисление синусов и косинусов углов вида Тригонометрические функции с примерами решения можно свести к вычислению синуса или косинуса угла Тригонометрические функции с примерами решения. Напри­мер:

Тригонометрические функции с примерами решения Применяя формулы сложения, аналогично можно получить:

Тригонометрические функции с примерами решения

Эти формулы называют формулами приведения для синуса. Следующие формулы называют формулами приведения для косинуса:

Тригонометрические функции с примерами решения

Проанализировав записанные формулы приведения, можно заметить закономерности, благодаря которым не обязательно заучи­ вать эти формулы. Для того чтобы записать любую из них, можно руководствоваться следующими правилами.

  1. В правой части равенства ставят тот знак, который имеет левая часть при условии, что Тригонометрические функции с примерами решения
  2. Если в левой части формулы аргумент имеет вид Тригонометрические функции с примерами решения, или Тригонометрические функции с примерами решения то синус заменяют на косинус и наоборот. Если аргумент имеет вид Тригонометрические функции с примерами решения то замена функции не происходит.

Покажем, как действуют эти правила для выражения . Тригонометрические функции с примерами решения Предположив, что Тригонометрические функции с примерами решенияприходим к выводу: Тригонометрические функции с примерами решенияявляется углом III координатной четверти. Тогда Тригонометрические функции с примерами решения. По первому правилу в правой части равенства должен стоять знак « — ».

Поскольку аргумент имеет вид Тригонометрические функции с примерами решения, то по второму правилу следует заменить синус на косинус. Следовательно, Тригонометрические функции с примерами решения.

Пример:

Упростите выражение Тригонометрические функции с примерами решения.

Решение:

Имеем: Тригонометрические функции с примерами решения

Пример:

Замените значение тригонометрической функции значением функции острого угла: 1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения.

Решение:

1) Тригонометрические функции с примерами решения. 2) Тригонометрические функции с примерами решения.

Уравнение COS x=b

Уравнение Тригонометрические функции с примерами решения

Поскольку областью значений функции Тригонометрические функции с примерами решения является промежуток Тригонометрические функции с примерами решения, то при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения не имеет реше­ний. Вместе с тем при любом Тригонометрические функции с примерами решения таком, что Тригонометрические функции с примерами решения, это уравнение имеет корни, причем их бесконечно много. Сказанное легко понять, обратившись к графической интерпретации: графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, имеют бесконечно много общих точек (рис. 15.1).

Тригонометрические функции с примерами решения

Понять, как решать уравнение Тригонометрические функции с примерами решения в общем случае, поможет рассмотрение частного случая. Например, решим уравнение Тригонометрические функции с примерами решения. На рисунке 15.2 изображены графики функций Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения (красная часть кривой на рисунке 15.2), то есть на промежутке, длина которого равна периоду этой функции. Прямая Тригонометрические функции с примерами решения пересекает график функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения в двух точках Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, абсциссы которых являются противоположными числами.

Следовательно, уравнение Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения имеет два корня. Поскольку Тригонометрические функции с примерами решения, то этими корнями являются числа Тригонометрические функции с примерами решения. Функция у = cos х — периодическая с периодом Тригонометрические функции с примерами решения. Поэтому каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от одного из найденных корней Тригонометрические функции с примерами решенияили Тригонометрические функции с примерами решения на число вида Тригонометрические функции с примерами решения.

Итак, корни рассматриваемого уравнения можно задать формулами Тригонометрические функции с примерами решения. Как правило, эти две формулы заменяют одной записью:

Тригонометрические функции с примерами решения

Вернемся к уравнению Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. На рисунке 15.3 показано, что на промежутке Тригонометрические функции с примерами решения это уравнение имеет два корня Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где а Тригонометрические функции с примерами решения (при b = 1 эти корни совпадают и равны нулю).

Тригонометрические функции с примерами решения

Тогда все корни уравнения Тригонометрические функции с примерами решения имеют вид

Тригонометрические функции с примерами решения

Эта формула показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решенияимеет специальное название — арккосинус.

Определение. Арккосинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, называ­ют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения, косинус которого равен Тригонометрические функции с примерами решения. Для арккосинуса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения. Например,

Вообще, Тригонометрические функции с примерами решения, если Тригонометрические функции с примерами решения Теперь формулу корней уравнения Тригонометрические функции с примерами решения, можно записать в следующем виде:

Тригонометрические функции с примерами решения (1)

Заметим, что частные случаи уравнения Тригонометрические функции с примерами решения (для Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения) были рассмотрены ранее (см. п. 9).

Напомним полученные результаты:

Тригонометрические функции с примерами решения

Такие же ответы можно получить, используя формулу (1). Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение:

1) Тригонометрические функции с примерами решения 2 )Тригонометрические функции с примерами решения 3) Тригонометрические функции с примерами решения

Решение:

1) Используя формулу (1), запишем:

Тригонометрические функции с примерами решения Далее получаем:

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения 2) Имеем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

3) Перепишем данное уравнение следующим образом:

Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Уравнения sin x=b и tg x=b

Уравнения Тригонометрические функции с примерами решения

Поскольку областью значений функции Тригонометрические функции с примерами решения является про­межуток [-1; 1], то при | b | > 1 уравнение Тригонометрические функции с примерами решения не имеет решений. Вместе с тем при любом Тригонометрические функции с примерами решения таком, что Тригонометрические функции с примерами решения, это уравнение имеет корни, причем их бесконечно много. Отметим, что частные случаи уравнения Тригонометрические функции с примерами решения (для Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения) были рассмотрены ранее (см. п. 9). Напомним полученные результаты:

Тригонометрические функции с примерами решения

Для того чтобы получить общую формулу корней уравнения Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, обратимся к графической интерпретации.

На рисунке 16.1 изображены графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения(красная часть кривой на рисунке 16.1), то есть на промежутке, длина которого равна периоду этой функции. На этом промежутке уравнение Тригонометрические функции с примерами решенияимеет два корня Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения(при Тригонометрические функции с примерами решения эти корни совпадают и равны Тригонометрические функции с примерами решения ).

Поскольку функция Тригонометрические функции с примерами решения — периодическая с периодом Тригонометрические функции с примерами решения, то каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от одного из найденных корней на число вида Тригонометрические функции с примерами решения

Тогда корни уравнения Тригонометрические функции с примерами решения можно задать формулами

Тригонометрические функции с примерами решения Эти две формулы можно заменить одной записью:

Тригонометрические функции с примерами решения (1)

Действительно, если Тригонометрические функции с примерами решения — четное число, то есть Тригонометрические функции с примерами решения то получаем Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения — нечетное число, то есть Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения,Z, то получаем Тригонометрические функции с примерами решения

Формула (1) показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решения имеет специальное название — арксинус.

Определение. Арксинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, называют такое число Тригонометрические функции с примерами решения из промежуткаТригонометрические функции с примерами решения, синус которого равен Тригонометрические функции с примерами решения.

Для арксинуса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения.

Например, Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Вообще, Тригонометрические функции с примерами решения, если Тригонометрические функции с примерами решения

Теперь формулу корней уравнения Тригонометрические функции с примерами решения можно за­писать в следующем виде:

Тригонометрические функции с примерами решения (2) Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение: 1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения

Решение:

1) Используя формулу (2), запишем:

Тригонометрические функции с примерами решения

Далее получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ : Тригонометрические функции с примерами решения

2) Перепишем данное уравнение следующим образом:

Тригонометрические функции с примерами решения

Тогда Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияПоскольку областью значений функции Тригонометрические функции с примерами решения является мно­жество Тригонометрические функции с примерами решения, то уравнение Тригонометрические функции с примерами решения имеет решения при любом значенииТригонометрические функции с примерами решения.

Для того чтобы получить формулу корней уравнения Тригонометрические функции с примерами решения, обратимся к графической интерпретации. На рисунке 16.2 изображены графики функций Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения (красная кривая на рисунке 16.2), то есть на промежутке, длина которого равна периоду данной функции. На этом промежутке уравнение Тригонометрические функции с примерами решения при любом Тригонометрические функции с примерами решения имеет единственный корень Тригонометрические функции с примерами решения.

Поскольку функция Тригонометрические функции с примерами решения — периодическая с периодом Тригонометрические функции с примерами решения, то каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от найденного корня на число вида Тригонометрические функции с примерами решения

Тогда корни уравнения Тригонометрические функции с примерами решения можно задать формулой

Тригонометрические функции с примерами решения Полученная формула показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решения имеет специальное название — арктангенс.

Определение. Арктангенсом числа Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежуткаТригонометрические функции с примерами решения, тангенс которого равен Тригонометрические функции с примерами решения.

Для арктангенса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения Например,

Вообще, Тригонометрические функции с примерами решения

Теперь формулу корней уравнения Тригонометрические функции с примерами решенияможно записать в следующем виде:

Тригонометрические функции с примерами решения

Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Имеем: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ : Тригонометрические функции с примерами решения

Тригонометрические уравнения, сводящиеся к алгебраическим

В пунктах 15, 16 мы получили формулы для решения уравнений вида Тригонометрические функции с примерами решения Эти уравнения называют простейшими тригонометрическими уравнениями. С помощью различных приемов и методов многие тригонометрические уравнения можно свести к простейшим.

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Выполним замену Тригонометрические функции с примерами решения Тогда данное уравнение принимает вид Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решениято уравнение Тригонометрические функции с примерами решения не имеет корней. Следовательно, исходное уравнение равносильно уравнению Тригонометрические функции с примерами решения Окончательно получаем: Тригонометрические функции с примерами решения Ответ: Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Используя формулу Тригонометрические функции с примерами решения преобразуем данное уравнение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

sin х — 3(1 — 2 sin2x) — 2 = 0; 6 sin2 х + sin x — 5 = 0.

Пусть Тригонометрические функции с примерами решения. Получаем квадратное уравнение Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения.

Итак, данное уравнение равносильно совокупности двух уравнений: Тригонометрические функции с примерами решения

Имеем: Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Поскольку Тригонометрические функции с примерами решения то данное уравнение можно записать следующим образом:

Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Пусть Тригонометрические функции с примерами решения. Имеем: Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Получаем, что данное уравнение равносильно совокупности двух уравнений: Тригонометрические функции с примерами решения

Отсюда Тригонометрические функции с примерами решения

Ответ :Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияГЛАВНОЕ В ПАРАГРАФЕ 2

Радианная мера угла

Углом в один радиан называют центральный угол окружности, опирающийся на дугу, длина которой равна радиусу окруж­ности. Радианная и градусная меры угла связаны формулами

Тригонометрические функции с примерами решения

Косинус, синус и тангенс угла поворота

Косинусом и синусом угла поворота Тригонометрические функции с примерами решения называют соответственно абсциссу Тригонометрические функции с примерами решения и ординату Тригонометрические функции с примерами решения точки Тригонометрические функции с примерами решения единичной окружности, полученной в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Тангенсом угла поворота Тригонометрические функции с примерами решения называют отношение синуса этого sin о угла к его косинусу: Тригонометрические функции с примерами решения

Знаки значений тригонометрических функций

Тригонометрические функции с примерами решения

Периодические функции

ФункциюТригонометрические функции с примерами решения называют периодической, если существует такое число Тригонометрические функции с примерами решения что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства Тригонометрические функции с примерами решения Число Т на­зывают периодом функции Тригонометрические функции с примерами решения

Если среди всех периодов функции Тригонометрические функции с примерами решения существует наименьший положительный период, то его называют главным периодом функции Тригонометрические функции с примерами решения

Связь тригонометрических функций одного и того же аргумента

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Формулы сложения

Тригонометрические функции с примерами решения

Формулы приведения

Для того чтобы записать любую из формул приведения, можно руководствоваться следующими правилами:

1) в правой части равенства ставят тот знак, который имеет левая часть при условии, что Тригонометрические функции с примерами решения

2) если в левой части формулы аргумент имеет вид Тригонометрические функции с примерами решения или Тригонометрические функции с примерами решениято синус меняют на косинус и наоборот. Если аргумент имеет вид Тригонометрические функции с примерами решения то замена функции не происходит.

Формулы двойного аргумента

Тригонометрические функции с примерами решения

Арккосинус, арксинус и арктангенс

Арккосинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения косинус которого равен Тригонометрические функции с примерами решения Арксинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения синус которого равен Тригонометрические функции с примерами решения Арктангенсом числа Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения , тангенс которого равен Тригонометрические функции с примерами решения

Решение простейших тригонометрических уравнений

Тригонометрические функции с примерами решения

——

Тригонометрические функции

Прежде чем рассматривать тригонометрические функции, напомним, что такое радианная мера угла.

Радианной мерой центрального угла называется отношение длины дуги, на которую он опирается, к радиусу окружности. Если Тригонометрические функции с примерами решения—длина радиуса, Тригонометрические функции с примерами решения—длина дуги, то радианная мера дуги Тригонометрические функции с примерами решения выразится так:

Тригонометрические функции с примерами решения

Так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения измеряются линейными единицами, то из (1) следует, что Тригонометрические функции с примерами решения—число отвлеченное. Из геометрии известно, что

Тригонометрические функции с примерами решения

где Тригонометрические функции с примерами решения—градусная мера центрального угла, опирающегося на дугу Тригонометрические функции с примерами решения. Поэтому радианная мера угла Тригонометрические функции с примерами решения будет

Тригонометрические функции с примерами решения

Находя Тригонометрические функции с примерами решения из формулы (2), получим выражение градусной меры угла через радианную:

Тригонометрические функции с примерами решения

Пример:

Найти радианную меру угла 30°.

Решение:

Подставляя в формулу (2) вместо Тригонометрические функции с примерами решения число 30, найдем

Тригонометрические функции с примерами решения

Пример:

Найти градусную меру угла, радианная мера которого равна 0,8.

Решение:

Подставляя в формулу (3)Тригонометрические функции с примерами решения, находим

Тригонометрические функции с примерами решения

или приближенно, полагая Тригонометрические функции с примерами решения, найдем Тригонометрические функции с примерами решения. Так как Тригонометрические функции с примерами решения —постоянное число, то формула (2) устанавливает прямую пропорциональность между числами Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения.

В тригонометрии, помимо положительных углов, вводятся и отрицательные, поэтому радианная мера угла может быть и отрицательной. Например, угол —90° имеет радианную меру Тригонометрические функции с примерами решения.

График функции y=sin x

График функции Тригонометрические функции с примерами решения

При построении графиков тригонометрических функций можно обойтись без таблиц. Для этого надо поступить так (рис. 26):

Тригонометрические функции с примерами решения

1. Возьмем окружность единичного радиуса и от точки Тригонометрические функции с примерами решения отложим на окружности в направлении, противоположном движению часовой стрелки, дугу Тригонометрические функции с примерами решения, длину которой обозначим Тригонометрические функции с примерами решения. Тогда радианная мера угла Тригонометрические функции с примерами решения будет численно равна Тригонометрические функции с примерами решения. Построим линию синуса этого угла; она изобразится отрезком Тригонометрические функции с примерами решения. Так как Тригонометрические функции с примерами решения, то синус угла, найденный как отношение Тригонометрические функции с примерами решения, численно равен длине отрезка Тригонометрические функции с примерами решения.

2. Возьмем оси координат (рис. 26). На оси Тригонометрические функции с примерами решения отложим отрезок Тригонометрические функции с примерами решения, длина которого равна длине Тригонометрические функции с примерами решения дуги Тригонометрические функции с примерами решения. Отрезок Тригонометрические функции с примерами решения, перпендикулярный оси, возьмем равным длине отрезка Тригонометрические функции с примерами решения. Тогда Тригонометрические функции с примерами решения. Следовательно, точка Тригонометрические функции с примерами решения имеет координаты Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения. Проделав это построение для различных дуг, получим ряд точек, лежащих на графике функции Тригонометрические функции с примерами решения. На рис. 26 построены точки, соответствующие дугам:

Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения периодическая и имеет период Тригонометрические функции с примерами решения. Это значит, что для любого значения Тригонометрические функции с примерами решения выполняется равенство^

Тригонометрические функции с примерами решения

График функции y=sin wx

График функции Тригонометрические функции с примерами решения

При изменении аргумента от 0 до Тригонометрические функции с примерами решения синус принимает все значения отТригонометрические функции с примерами решения до Тригонометрические функции с примерами решения. При дальнейшем увеличении аргумента значения синуса в силу периодичности повторяются.

Тригонометрические функции с примерами решения

Если рассмотрим функцию Тригонометрические функции с примерами решения, то при изменении аргумента Тригонометрические функции с примерами решения от 0 до Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения примет все значения от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решения. При дальнейшем увеличении аргумента сох значения sin сох будут повторяться. Найдем период функции Тригонометрические функции с примерами решения. Так как значения функции начнут повторяться с того момента, когда аргумент Тригонометрические функции с примерами решения станет равным Тригонометрические функции с примерами решения, то период найдется из равенства Тригонометрические функции с примерами решения.

Отсюда получаем, что Тригонометрические функции с примерами решения. Следовательно, Тригонометрические функции с примерами решения есть период функции Тригонометрические функции с примерами решения. В самом деле,

Тригонометрические функции с примерами решения

Поэтому функция Тригонометрические функции с примерами решения имеет график, изображенный на рис. 27. Если Тригонометрические функции с примерами решения, то график Тригонометрические функции с примерами решения сжимается по сравнению с графиком Тригонометрические функции с примерами решения. Если же Тригонометрические функции с примерами решения, то график растягивается (на рис. 27 Тригонометрические функции с примерами решения).

График функции y=sin (x-φ)

График функции Тригонометрические функции с примерами решения

Перейдем от старых осей координат к новым, начало которых находится в точке Тригонометрические функции с примерами решения. Старые координаты выражаются через новые так (см. § 2 гл. III):

Тригонометрические функции с примерами решения

Подставляя эти выражения в уравнение Тригонометрические функции с примерами решения, получимТригонометрические функции с примерами решения, т. е. график функции Тригонометрические функции с примерами решения в новой системе координат выглядит так же, как график функции

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения в старой системе координат. Следовательно, график функции Тригонометрические функции с примерами решения в старой системе координат можно получить, сдвигая график Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения вправо, если Тригонометрические функции с примерами решения, и влево, если Тригонометрические функции с примерами решения (на рис. 28 Тригонометрические функции с примерами решения).

График функции y=A sin x

График функции Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения, то каждая ордината на графике Тригонометрические функции с примерами решения имеет то же направление, что и ордината точки, лежащей на графике Тригонометрические функции с примерами решения, только ее длина умножается на число Тригонометрические функции с примерами решения. При этом, если Тригонометрические функции с примерами решения, то ордината увеличивается, если же

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения, то уменьшается. При Тригонометрические функции с примерами решения ордината изменяет направление на противоположное. На рис. 29 изображены графики функций Тригонометрические функции с примерами решения.

Таким образом, уравнение Тригонометрические функции с примерами решения определяет на плоскости кривую линию, называемую синусоидой. Коэффициент Тригонометрические функции с примерами решения, называемый частотой, влияет на растяжение синусоиды в направлении оси Тригонометрические функции с примерами решения. При этом, если Тригонометрические функции с примерами решения, то синусоида растягивается, если же Тригонометрические функции с примерами решения, то сжимается. Коэффициент Тригонометрические функции с примерами решения называется фазой, его величина влияет на сдвиг синусоиды, как целого, вдоль оси Тригонометрические функции с примерами решения. Если Тригонометрические функции с примерами решения положителен, то сдвиг производится вправо, если же Тригонометрические функции с примерами решения отрицателен, то — влево. Коэффициент Тригонометрические функции с примерами решения называется амплитудой, его величина влияет на растяжение синусоиды в направлении оси Тригонометрические функции с примерами решения.

На рис. 30 показано последовательное построение графика функцииТригонометрические функции с примерами решения. Сверху изображен график функции Тригонометрические функции с примерами решения, ниже—график функции Тригонометрические функции с примерами решения, еще ниже—графикТригонометрические функции с примерами решения и в самом низу —график функции Тригонометрические функции с примерами решения. На всех четырех графиках точки, имеющие одну и ту же абсциссу, лежат на одной вертикальной прямой.

Тригонометрические функции с примерами решения

Указанный метод построения синусоид может быть использован и для построения косинусоид. Приведем пример.

Пример:

Построим график функции Тригонометрические функции с примерами решения.

Решение:

Применяя формулы приведения, известные из тригонометрии будем иметь

Тригонометрические функции с примерами решения

Этот график уже построен на рис. 30, 4.

————-

Тригонометрические функции

Периодические функции

Многие события, происходящие в природе — восход и закат солнца, появление комет, сезонные изменения температуры воздуха, всплеск и затухание волн в океане и т.п., являются циклически повторяющимися событиями. Процесс по производству оборудования, движение частей машины и т.д., так же могут быть заданы периодической функцией. Исследуем периодические переменные на примере. Работа станка по нарезке ленты. В фирме по производству измерительной ленты имеется станок, при помощи которого тонкая лента разрезается на кусочки по 3 м и сворачивается. График работы станка и описание принципа работы висит на стене.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

1. 0,5 см-наибольшая высота, на которую поднимается нож.

2. Нож бездействует 3 секунды, с 0-3, 4 -7 секунды и т.д.

3. Нож опускается вниз в интервале с 3 до 3,5 сек., отрезает ленту, и с 3,5 до 4 сек. нож поднимается вверх.

4. На один полный цикл тратится 4 секунды. На какой, по вашему секунде, нож снова отрежет ленту?

Станок по изготовлению измерительной ленты циклически повторяет работу. Один цикл длится 4 секунды. График зависимости высоты ножа от времени, также соответствует одному циклу. В следующий раз нож разрежет ленту на 11,5 секунде. Такие функции называются циклическими (периодическими) функциями. Значения периодических функций повторяются на определённом интервале.

Пусть существует такое число Тригонометрические функции с примерами решения, что для произвольного х из области определения функции Тригонометрические функции с примерами решения, также принадлежит области определения и удовлетворяют условию Тригонометрические функции с примерами решения. Тогда Тригонометрические функции с примерами решения называется периодической функцией и, если период равен Т, то Тригонометрические функции с примерами решения также является периодом Тригонометрические функции с примерами решения. На самом деле, например,Тригонометрические функции с примерами решения.

Наименьший положительный период функции называется его основным периодом.

Периодичность тригонометрических функций

Можно увидеть , что при совпадении конечных сторон угла поворота, значения тригонометрических функций совпадают. Например, Тригонометрические функции с примерами решениядля всех значений х. Значит, значения тригонометрических функций повторяются. Значение синуса и косинуса повторяются с периодом Тригонометрические функции с примерами решения, а тангенса и котангенса с периодом Тригонометрические функции с примерами решения. Тригонометрическими функциями числового аргумента х называются одноименные тригонометрические функции угла равного х радиан. Все свойства функций для угла (четность и нечетность, периодичность и тд.) одинаковы для тригонометрических функций от числового аргумента. Чтобы построить график этой функции, достаточно изобразить его на отрезке, длина которого равна периоду, а затем повторить его.

График функций y= sin x и y=cos x

График функций Тригонометрические функции с примерами решения

График функции y=sin x

График функции Тригонометрические функции с примерами решения.

Периодическая функция Тригонометрические функции с примерами решения ири движении по окружности при повороте на угол Тригонометрические функции с примерами решения показывает высоту (расстояние по вертикали) от оси х. На единичной окружности координата каждой точки равна Тригонометрические функции с примерами решения и удовлетворяют уравнению Тригонометрические функции с примерами решения. Здесь угол Тригонометрические функции с примерами решения угол между единичным радиусом и положительным направлением оси х. Значит, координата у определяется Тригонометрические функции с примерами решения.

Между дугой, которую описывает точка, и значениями функции Тригонометрические функции с примерами решения, существует однозначное соответствие.

Тригонометрические функции с примерами решения

Разобьём дугу, принадлежащую I четверти на три равных дуги и в точках деленияТригонометрические функции с примерами решения проведём прямые, параллельные оси абсцисс. Через точки пересечения прямых Тригонометрические функции с примерами решения с соответствующими параллельными прямыми проведём сплошную линию. Получим график, как показано на рисунке.

Тригонометрические функции с примерами решения

Известно, что единичная окружность совершает полный оборот за 3600 или Тригонометрические функции с примерами решения радиана. Построим, аналогичным образом, график функции Тригонометрические функции с примерами решения на промежуткеТригонометрические функции с примерами решения: Тригонометрические функции с примерами решения

Так как синус является периодической функцией, то на промежутке длиной Тригонометрические функции с примерами решения: график Тригонометрические функции с примерами решения будет повторятся заново. Если обозначить функцию через у, а аргумент через х, то можно записать Тригонометрические функции с примерами решения. График функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения можно начертить, как показано ниже:

Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения называется синусоидой (с амплитудой, равной 1, и периодом Тригонометрические функции с примерами решения).

График функции Тригонометрические функции с примерами решения можно построить при помощи таблицы значений. Так как синус является периодической функцией, то достаточно построить этот график на отрезке [0; Тригонометрические функции с примерами решения] длиной Тригонометрические функции с примерами решения. Отметим значение точек из таблицы на графике и проведём сплошную линию. Полученный график, является графиком функцииТригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Как из таблицы значений, так и по графику видно, что график функции, Тригонометрические функции с примерами решения проходит через точку (0; 0) начало координат.

При возрастании х от 0 до Тригонометрические функции с примерами решения значения у возрастают от 0 до 1;

По таблице значений и графику функции Тригонометрические функции с примерами решения перечислим её свойства:

  1. Область определения множество всех действительных чисел.
  2. Область значений отрезок [-1; 1].
  3. Функция Тригонометрические функции с примерами решения нечётная: Тригонометрические функции с примерами решения, т.е. график симметричен относительно начала координат.
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения.
  5. Синусоида пересекает ось абсцисс в точках …, —Тригонометрические функции с примерами решения, …, и т.д., т.е. при Тригонометрические функции с примерами решенияфункция Тригонометрические функции с примерами решения обращается в нуль. Синусоида проходит через начало координат.
  6. Наибольшее значение равное 1 функция принимает при х … , Тригонометрические функции с примерами решения;Тригонометрические функции с примерами решения; ….., т.е. при Тригонометрические функции с примерами решения .
  7. Наименьшее значение равное -1 функция принимает при Тригонометрические функции с примерами решения;Тригонометрические функции с примерами решеният.е. при Тригонометрические функции с примерами решения.

График функции y=cos x

График функции Тригонометрические функции с примерами решения.

График функцииТригонометрические функции с примерами решения на отрезке [0; Тригонометрические функции с примерами решения] можно построить аналогично графику функции Тригонометрические функции с примерами решения геометрическим способом, используя единичную окружность, а также при помощи таблицы значений. Так как Тригонометрические функции с примерами решения, т.е. график можно построить переместив график функции Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения влево. Получаем график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

По графику перечислим свойства функции Тригонометрические функции с примерами решения:

  1. Область определения: множество всех действительных чиселТригонометрические функции с примерами решения.
  2. Область значений отрезок [-1; 1].
  3. Функция Тригонометрические функции с примерами решения чётная функция (график симметричен относительно оси у)
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения
  5. График пересекает ось абсцисс в точках … , Тригонометрические функции с примерами решения,… , т.д., т.е. при Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения обращается в нуль. График пересекает ось ординат в точке (0; 1).
  6. Наибольшее значение равное 1 функция принимает при х …, Тригонометрические функции с примерами решения,… , т.е. при Тригонометрические функции с примерами решения .
  7. Наименьшее значение равное — 1 функция принимает при Тригонометрические функции с примерами решения,… , т.е. при Тригонометрические функции с примерами решения.

Строить графики функций у = sin х и у = cos х удобно при помощи пяти основных точек (точек пересечения с осью абсцисс и точками экстремума). Последовательность пяти точек для функции у = sin х на промежутке [0;Тригонометрические функции с примерами решения] может быть задана так: Тригонометрические функции с примерами решения

Последовательность пяти точек для функции у = cos х на промежутке [0; Тригонометрические функции с примерами решения] может быть задана так: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Преобразование графиков функций у = sin х и у = cos х.

Растяжение и сжатие.

Пример 1. Если на графики функции у = sinx абсциссы оставить без изменения, а ординаты увеличить в 2 раза, то получим точки, принадлежащие графику функции у = 2 sinх. Это говорит о том, что график функции у = 2 sinх может быть построен из графика функции у = sinх растяжением от оси абсцисс в 2 раза. График функции у = 0,5 sinх можно построить сжатием к оси абсцисс графика функции у = sinх в 2 раза.

Тригонометрические функции с примерами решения

Графики функций у = a sin х и у = a cos х получаются соответственно из графиков функций у = sin х и у = cos х растяжением от оси абсцисс при Тригонометрические функции с примерами решения и сжатием, при Тригонометрические функции с примерами решения. При а < 0 график функции отображается симметрично относительно оси х.

Пример 2. График функции у = sin 2х в 2 раза «обгоняет» график функции у = sin х. Если функция у = sin х принимает значения от 0 до 1 на промежуткеТригонометрические функции с примерами решения то функция у = sin 2х эти же значения принимает на интервале в этом промежутке Тригонометрические функции с примерами решения. Точки графика функции у = sin 2х можно получить, умножив абсциссы точек графика функции у = sin х на Тригонометрические функции с примерами решения, при этом не меняя значения ординат. График функции у = sin 2х получается из графика у = sin х сжатием в 2 раза и целый период умещается в отрезке Тригонометрические функции с примерами решения. График функции Тригонометрические функции с примерами решения получается растяжением графика функции у = sin х в 2 раза и целый период умещается в отрезок Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияГрафики функций у = sin bx и у = cos bx соответственно получаются из графиков функций у = sin х и у = cos х сжатием к оси ординат, при b > 1 и растяжением при 0 < b < 1. В случае b < 0 с учётом того, что синус является нечётной функцией, а косинус чётной приводит к случаям, указанным выше.

Графики функцийТригонометрические функции с примерами решения полученные растя-жснием(сжатием) вдоль координатных осей графиков Тригонометрические функции с примерами решения также являются синусоидами (косинусоидами).

При увеличении значения Тригонометрические функции с примерами решения амплитуда увеличивается, при уменьшении — уменьшается. При увеличении значения Тригонометрические функции с примерами решения период уменьшается, при уменьшении — увеличивается.Тригонометрические функции с примерами решения

Пример. Постройте график функции Тригонометрические функции с примерами решения .

1.График функции Тригонометрические функции с примерами решения строится растяжением в 2 раза графика функции Тригонометрические функции с примерами решения от оси ординат.

2.Полученный график растягивается от оси абсцисс в 2 раза.

Тригонометрические функции с примерами решения

Исследование. Пусть материальная точка движется по окружности радиуса Тригонометрические функции с примерами решения из начальной точки А (а; 0) с угловой скоростью Тригонометрические функции с примерами решения.

1)Для этой точки запишите зависимость координаты от времени Тригонометрические функции с примерами решения .

Тригонометрические функции с примерами решения

2)Найдите наибольшее и наименьшее значение абсцисс и ординат точки.

3)Обоснуйте, что положение точки не меняется при изменении

времени на Тригонометрические функции с примерами решения .

Период и амплитуда функций у = a sin bx и у = a cos bx

Теорема. Если основной период функции Тригонометрические функции с примерами решенияравен Т, то основной период функции Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения (здесь а и b числа, отличные от нуля).

Отсюда получаем, чтоТригонометрические функции с примерами решения является основным периодом для функций Тригонометрические функции с примерами решения. На самом деле,

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Число Тригонометрические функции с примерами решения является амплитудой. Амплитуда равна половине разности наибольшего и наименьшего значения.

Пример. Для функции Тригонометрические функции с примерами решения амплитуда равна |-3| или 3, основной 2л л период Тригонометрические функции с примерами решения.

Сдвиг по горизонтали — фаза.

В функциях Тригонометрические функции с примерами решения член с показывает смещение графика по горизонтали, которое называется фазой. Пример. Постройте график функции Тригонометрические функции с примерами решения

Построим график функции Тригонометрические функции с примерами решения растяжением графика

функции у = cos х в 2 раза от оси ординат. График функции

Тригонометрические функции с примерами решения можно получить смещением графика

функции Тригонометрические функции с примерами решения вправо на Тригонометрические функции с примерами решения единиц, т.е. получаем

график функцииТригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Смещение по вертикали

В функциях Тригонометрические функции с примерами решения член d показывает смещение но вертикали: если d > 0 график функции сдвигается вверх, d < 0 график сдвигается вниз.

Пример. Постройте график функции у = 2 sin х — 1.

Решение: ниже показаны этапы преобразования графика функции

у = sin x в график функции у = 2 sin х — 1 по шагам.

1.Увеличиваем амплитуду в 2 раза получаем график у = 2 sinx.

2.Сдвигаем график вниз на одну единицу и получаем график функции у = 2 sinx — 1. Тригонометрические функции с примерами решения

Множество значений функции Тригонометрические функции с примерами решения.

График функции у= 2 sin х-1 изменяется относительно прямой у = -1 на 2 единицы вверх и вниз. Эта линия называется средней линией.

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

максимум = средняя линия + амплитуда

минимум = средняя линия — амплитуда

Тригонометрические функции с примерами решения

Пример. Постройте график функции Тригонометрические функции с примерами решения.

1)График функции Тригонометрические функции с примерами решения получается из графика функции

у = cos х сжатием к оси ординат в 2 раза.

Тригонометрические функции с примерами решения

2) Смещая график функции у = cos 2х влево на Тригонометрические функции с примерами решения единицы получаем график функции Тригонометрические функции с примерами решения, т.е. Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

3) Растянем график функции Тригонометрические функции с примерами решениявдоль оси ординат в 3 раза и получим график функцииТригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

4) Сместим график функцииТригонометрические функции с примерами решения по вертикали на 1 единицу вверх и получим график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Построение синусоиды по пяти основным точкам

Преобразование при помощи движения и подобия сохраняет «форму» кривой. Поэтому не только график синуса, но в тоже время и кривая, полученная растяжением (сжатием) и последовательными смещениями, называется синусоидой. Свойства функций, заданных в виде Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решенияаналогичны свойствам функций синуса и косинуса, что помогает при их исследовании. В начале необходимо найти их период и точки, в которых значения функции равны 0 или ± а. График функции Тригонометрические функции с примерами решения иТригонометрические функции с примерами решенияможно легко построить по значениям пяти важных точек в промежутке Тригонометрические функции с примерами решения по следующему алгоритму.

  1. Определяем амплитуду графика.
  2. Определяем основной период графика Тригонометрические функции с примерами решения
  3. Разбиваем отрезок [0; Т] на 4 равных части: Тригонометрические функции с примерами решения.
  4. Пять важных точек — точки пересечения с осью х, точки максимума и минимума. Для вышеупомянутых точек х находятся значения у.
  5. Координаты 5-ти точек (х; у) отмечаются на координатной плоскости.
  6. Эти точки соединяются. Полученная синусоидальная кривая является графиком для одного периода. Повторяя построенный график, можно получить график заданной функции на любом отрезке.

Пример 1. Постройте график функции Тригонометрические функции с примерами решения по пяти основным точками.

Решение: амплитуда: Тригонометрические функции с примерами решения

Основной период: Тригонометрические функции с примерами решения

Отрезок, соответствующий одному периоду по оси х разделим на четыре равных части. Для целого периода Тригонометрические функции с примерами решения равна Тригонометрические функции с примерами решения. Начиная от точки Тригонометрические функции с примерами решения, через каждые Тригонометрические функции с примерами решения отметим справа последовательно точки Тригонометрические функции с примерами решениячерез Тригонометрические функции с примерами решения периода, Тригонометрические функции с примерами решения черезТригонометрические функции с примерами решения периода, Тригонометрические функции с примерами решения через Тригонометрические функции с примерами решения периода и, наконец,

Тригонометрические функции с примерами решения через целый период. Тригонометрические функции с примерами решения

Вычислим значения функции Тригонометрические функции с примерами решения в указанных точках. Тригонометрические функции с примерами решения

Отметим координаты этих точек на координатной плоскости, и соединим сплошной линией. Данный график является графиком функции Тригонометрические функции с примерами решения на отрезке Тригонометрические функции с примерами решения. Если параллельно перенести данный график вдоль оси абсцисс на Тригонометрические функции с примерами решения то получим график функции Тригонометрические функции с примерами решения на всей числовой оси (показано пунктиром).

Тригонометрические функции с примерами решения

Пример 2. Постройте график функции Тригонометрические функции с примерами решения.

Решение. Амплитуда: Тригонометрические функции с примерами решения. Значения у меняются от -2 до 2.

Основной период: Тригонометрические функции с примерами решения.

Разделим отрезок Тригонометрические функции с примерами решения (один период ) на 4 равные части. Найдём значения х и соответствующие значения функции. Построим график.

Тригонометрические функции с примерами решения

Пример 3. Для нахождения начальной и конечной точек периода функции Тригонометрические функции с примерами решения надо решить неравенство Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Здесь начальная точка — показывает и фазу тоже.

Разделив отрезок Тригонометрические функции с примерами решения на 4 равные части необходимо определить пять основных точек. Значения х в этих пяти точках будут Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

В этих точках х для функции Тригонометрические функции с примерами решения получаем точки Тригонометрические функции с примерами решения и строим график. Для функции Тригонометрические функции с примерами решения имеем: амплитуда:

Тригонометрические функции и периодические события

В природе и в жизни мы достаточно часто сталкиваемся с периодическими процессами — вращение Земли, изменение времен года, дыхание, сердечный ритм сердца человека и т.д.. Также периодическими являются очень многие физические явления. Например, при исследовании колебания электрических и оптических волн используют периодические функции. Самые простые колебания называются гармоническими колебаниями и записываются в виде Тригонометрические функции с примерами решения . Тригонометрические функции с примерами решения

Пример 1. Биология. В биологии прогнозирование численности зверей и птиц моделируют с помощью периодических функций. Учёные исследуют численность сов и мышей в одном регионе. В результате моделируется функция численности особей (по месяцам).

Для сов эта функция записывается так: Тригонометрические функции с примерами решения,

для мышей так: Тригонометрические функции с примерами решения.

По информации, представленной на графике, можно сделать выводы

о численности сов и мышей, которые являются нищей для сов.

а)Постройте графики каждой функции.

б)Какой вывод можно сделать об изменении численности сов и мышей?

в)Исследуйте отношение численности сов и мышей в зависимости от времени.

Решение:

а) Тригонометрические функции с примерами решения

Для сов имеем: максимум функции 1100, минимум 900.

Амплитуда: 100. Сдвиг по вертикали: d = 1000 (начальное значение). Средняя линия = 1000. Период:Тригонометрические функции с примерами решения, тогда Тригонометрические функции с примерами решения

Т.е., основной период функции 24 месяца.

Тригонометрические функции с примерами решения

Для мышей имеем: максимум функции 24 000, минимум 16 000.

Амплитуда : 4000. Сдвиг по вертикали: d = 20000 (начальное значение). Средняя линия = 20000. Период:Тригонометрические функции с примерами решения, Тригонометрические функции с примерами решения, тогда Тригонометрические функции с примерами решения .

То есть, основной период данной функции, также 24 месяца.

б) Если графики построены в одном масштабе, то их можно сравнить. Так как мыши являются пищей для сов, то при увеличении сов, численность мышей уменьшается и стремиться к минимальному значению. При уменьшении сов численность мышеи увеличивается и достигает наибольшего значения в то время, когда количество сов достигает минимума

Тригонометрические функции с примерами решения

в) В таблице показано отношение количества сов и мышей за каждые 6 месяцев.

Тригонометрические функции с примерами решения

Это отношение должно изменяться в определённой закономерности. Для того, чтобы увидеть эту закономерность, построим функцию соответствующую отношению при помощи граф калькулятора. Функцию Тригонометрические функции с примерами решения введём в граф калькулятор как Тригонометрические функции с примерами решения, а функцию Тригонометрические функции с примерами решения как Тригонометрические функции с примерами решения и построим график функции Тригонометрические функции с примерами решения . Увидим, что в этом случае отношение двух периодических функций является

периодической функцией. Тригонометрические функции с примерами решения

Графики функций y=tg x и y=ctg x

Графики функций Тригонометрические функции с примерами решения.

Исследование. Изменение тангенса угла.

1) На листе в клетку изобразите координатную плоскость и единичную окружность, с центром в начале координат. К окружности проведите касательную в точке (1;0).

2)Обозначим через К точку пересечения конечной стороны угла поворота Тригонометрические функции с примерами решения с касательной. Из Тригонометрические функции с примерами решения. Значение Тригонометрические функции с примерами решения, для острого угла поворота Тригонометрические функции с примерами решения равно длине отрезка АК.

3)В какой точке пересекает конечная сторона угла 45° касательную?

Тригонометрические функции с примерами решения

4)При помощи транспортира изобразите ещё несколько разных углов и и найдите ординаты точек пересечения с касательной.

5)Как изменяется ордината точки К, при стремлении угла Тригонометрические функции с примерами решения к 90″? Пересекается ли касательная с конечной стороной угла поворота при Тригонометрические функции с примерами решения = 90°?

6)Известно, что для периодической функции с периодом Т достаточно изучить функцию на одном интервале длиной Т.

На каком интервале для Тригонометрические функции с примерами решения целесообразно изучение функции?

7)Тригонометрические функции с примерами решения не определён для Тригонометрические функции с примерами решения = 90° и Тригонометрические функции с примерами решения = -90°. В интервале (-90°; 90°) функция определена.

Заполните таблицу и постройте график функции тангенса. Тригонометрические функции с примерами решения

8) Постройте график функции Тригонометрические функции с примерами решения при помощи граф калькулятора.

Функция y = tg х

Функция Тригонометрические функции с примерами решениях.

Значения тангенса для угла Тригонометрические функции с примерами решения равно угловому коэффициенту прямой, проходящей через начало координат и точки с координатами (cos Тригонометрические функции с примерами решения; sin Тригонометрические функции с примерами решения), расположенной на единичной окружности. Как видно по рисунку, длина отрезка касательной AQ равна ординате точки Q. Координаты точки Q равны Тригонометрические функции с примерами решения. Прямая AQ называется прямой тангенсов.

Тригонометрические функции с примерами решения

При Тригонометрические функции с примерами решения график функции Тригонометрические функции с примерами решения проходит через начало координат.

Если х, оставаясь меньше Тригонометрические функции с примерами решения, стремит к нему, то значения Тригонометрические функции с примерами решения увеличиваются и приближаются к Тригонометрические функции с примерами решения. Прямые Тригонометрические функции с примерами решения, так же как и

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения являются вертикальными асимптотами графика Тригонометрические функции с примерами решения.

Разобьём I четверть единичной окружности и отрезок Тригонометрические функции с примерами решенияна 4 равные части. На линии тангенсов построим отрезки, равные значению соответствующих углов. На оси Ох отметим точки, соответствующие данным углам, и восстановим к каждой из них перпендикуляр. Через эти точки, параллельно оси Ох, проведём параллельные прямые. Полученную последовательность точек соединим сплошной линией.Получим график функции Тригонометрические функции с примерами решения в промежутке Тригонометрические функции с примерами решения. Учитывая, что Тригонометрические функции с примерами решения, преобразуем полученный график симметрично относительно начала координат, получим график функции Тригонометрические функции с примерами решения на интервале Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Зная, что период функции Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения, построенный график продолжим на Тригонометрические функции с примерами решения вправо и влево. Получим график, который называется тангенсоида.

Основные свойства

График функции не является непрерывным, прерывается при х равных и кратных Тригонометрические функции с примерами решения в нечетное количество раз

Тригонометрические функции с примерами решения

Функция не имеет максимумов и минимумов.

Область значений функции множество всех действительных чисел.

Основной период функции равен Тригонометрические функции с примерами решения.

График функции пересекает ось х в точках Тригонометрические функции с примерами решения

Функция не определена в точках Тригонометрические функции с примерами решения. Пунктирные линии, проходящие через эти точки являются вертикальными асимптотами.

Область определения функций Тригонометрические функции с примерами решения.

Функция возрастает между двумя соседними асимптотами.

Функция нечетная: Тригонометрические функции с примерами решения

Функция y=ctg x

Функция Тригонометрические функции с примерами решения:

Для построения графика функции Тригонометрические функции с примерами решения— воспользуемся

тождеством Тригонометрические функции с примерами решения

1)Переместим график функции Тригонометрические функции с примерами решения влево вдоль оси абсцисс на Тригонометрические функции с примерами решения

2)Отобразим полученную кривую симметрично относительно оси абсцисс.

При Тригонометрические функции с примерами решения значения тангенса равны нулю, функция котангенса при данных значениях х не определена: Тригонометрические функции с примерами решения

Как видно по графику, точки пересечения с осью х (нули) и асимптоты функций тангенса и котангенса меняются местами. Тригонометрические функции с примерами решения

Основные свойства

График функции y= a tg bx

График функции Тригонометрические функции с примерами решения.

Для построения графика функции Тригонометрические функции с примерами решения, где а и b отличные от нуля различные числа, нужно определить следующее:

1.Период:Тригонометрические функции с примерами решенияНапример, период функции Тригонометрические функции с примерами решенияравен: Тригонометрические функции с примерами решения

2.Вертикальные асимптоты: Тригонометрические функции с примерами решения

Асимптотами функции Тригонометрические функции с примерами решения являются прямые:Тригонометрические функции с примерами решения

3. Определяется средняя точка отрезка между точкой пересечения оси х с асимптотой. Соответствующие значения у равны или а, или .

Пример 1. Построим график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Решение. период: Тригонометрические функции с примерами решения

Точка пересечения с осью абсцисс: (0; 0) Самая близкая асимптота от начала координат:Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения то есть

Тригонометрические функции с примерами решения Средние точки:Тригонометрические функции с примерами решения и на графике им соответствуют точки Тригонометрические функции с примерами решения.

Пример 2.

Постройте график функции Тригонометрические функции с примерами решенияна одном периоде

Тригонометрические функции с примерами решения

Решение: Для функции Тригонометрические функции с примерами решениязначения х на одном периоде меняется в интервалеТригонометрические функции с примерами решения. Соответствующий промежуток для функции Тригонометрические функции с примерами решениядля одного периода можно найти решив неравенство: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Асимптоты проходят через точкиТригонометрические функции с примерами решения. Учитывая точки Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения построим схематично график функции.

Обратные тригонометрические функции

Точек, в которых синусоида пересекает прямую, параллельную оси абсцисс, бесконечно много. Значит, на всей числовой оси для

функцииТригонометрические функции с примерами решения нет обратной функции.

Тригонометрические функции с примерами решения

Однако, на отрезке Тригонометрические функции с примерами решениявозрастает и от -1 до 1 принимает все значения, а также каждому значению аргумента соответствует единственное значение функции. Значит, на отрезке Тригонометрические функции с примерами решения функция sin х обратима и при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения на отрезке Тригонометрические функции с примерами решения имеет единственный корень.

Угол, из промежутка Тригонометрические функции с примерами решения синус которого равен а, называется арксинусом числа а и записывается как arcsin а. Равенство х = arcsin а эквивалентно двум условиям: 1) Тригонометрические функции с примерами решения 2)Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Примеры: Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Из определения имеем: Тригонометрические функции с примерами решения.

Можно показать, что Тригонометрические функции с примерами решения

При помощи арксинуса можно задать функцию Тригонометрические функции с примерами решения, с областью определения [-1; 1] и множеством значений Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решениятакже записывается как Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения получается симметричным преобразованием графика функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения относительно прямой Тригонометрические функции с примерами решения. Областью определения функции [- 1; 1], область значений Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Аналогично получаем, что на всей числовой оси не существует функции, обратной для Тригонометрические функции с примерами решения. Однако на отрезке Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения убывает и принимает все значения из отрезка [-1; 1]. То есть, на отрезке Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения обратима и при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения имеет единственный корень на Тригонометрические функции с примерами решения.

Угол, из промежутка Тригонометрические функции с примерами решения косинус которого равен а, называется арккосинусом числа а и записывается как arccos а.

Равенство Тригонометрические функции с примерами решения эквивалентно двум условиям: 1)Тригонометрические функции с примерами решения

2)Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Примеры. Тригонометрические функции с примерами решения