Proteus методичка

Введение

Цель данного руководства – показать вам на примере создания простой схемы, как проводить интерактивное моделирование, используя Proteus VSM. Пока мы сконцентрируемся на использовании Активных Компонентов (Active Components) и возможностях отладки редактора ISIS, мы также рассмотрим основы трассировки и основы управления схемами. Полный обзор этих тем может быть найден в справочной системе ISIS.

Схема, которую мы будем использовать для моделирования – это два светофора, соединенных с микроконтроллером PIC16F84 как показано ниже.

Пример схемы Traffic.dsn

Пример схемы Traffic.dsn

Пока мы будем рисовать схему с нуля, законченную версию можно будет найти по пути “SamplesTutorialsTraffic.DSN” в папке, где у вас установлен Proteus. Пользователи, которые знакомы с основными способами работы в ISIS, могут выбрать уже готовую схему и перейти к разделу о программе микроконтроллера. Однако, обратите пожалуйста внимание на то, что файл этого проекта содержит предумышленную ошибку – прочитайте для более подробной информации.

Если вы не знакомы с ISIS, интерфейс и основы использования детально рассмотрены в Обзоре Редактора ISIS, и хотя мы затронем эти вопросы в следующем разделе, вы должны выделить время, чтобы ознакомиться с программой перед работой.

Вычерчивание схемы

Размещение элементов

Начнем с размещения двух светофоров и PIC16F84 на новом макете схем. Начните новый проект, выберите иконку Компонент (Component) (все иконки имеют всплывающие подсказки и контекстно-зависимую справку, что помогает их использованию). Затем левый клик на букве ‘P’ наверху переключателя объектов (Object Selector), чтобы открыть окно Браузера Библиотек (Library Browser), которое появится поверх окна редактора (для более подробной информации смотрите Основы Ввода Схем в справочной системе ISIS).

Нажмите кнопку P на клавиатуре и напечатайте ‘Traffic’ в поле “Ключевые слова” (Key words), и дважды кликните на результате, чтобы переместить светофоры в переключатель объектов. Сделайте то же самое для PIC16F84A.

Единожды выбрав в проект светофоры и PIC16F84, закройте Браузер Библиотек и кликните один раз на PIC16F84 в переключателе объектов (это выделит ваш выбор и элемент будет показан в окне предварительного просмотра в правом верхнем углу экрана). Теперь левый клик на окне редактора, чтобы поместить элемент на схему, – повторите процесс, чтобы разместить на схеме два светофора.

Перемещение и ориентация

Мы создали узлы схемы, но случайно не идеально разместили их. Чтобы переместить элемент, кликните на нем правой кнопкой мыши (это выделит элемент), затем зажмите левую кнопку мыши и перетащите элемент (вы увидите контур элемента “следующий” за курсором мыши) на требуемую позицию. Когда контур будет там, где вы хотите, отпустите левую кнопку мыши, и элемент переместится на заданную позицию. Обратите внимание, что в данный момент элемент всё еще выделен – правый клик на пустом месте окна редактора вернет элементу нормальное состояние.

Чтобы повернуть элемент, правый клик на нем так же, как и в предыдущем случае, а затем левый клик на одной из иконок вращения (Rotation). Это повернет элемент на 90 градусов – повторите это столько раз, сколько требуется. Опять же, хороший способ – правый клик на пустом месте схемы, когда вы закончили, чтобы восстановить первоначальное состояние элемента.

Размечайте схему осмысленным способом (например, исходя из простоты восприятия), двигайте и поворачивайте элементы, как требуется. Если у вас возникли проблемы, советуем поработать с руководством в справочной системе ISIS – ISIS Tutorial.

Для нашей цели, мы игнорируем 2D графику, чтобы не запутываться, и сконцентрируемся на создании моделируемой схемы – для тех, кому интересно, полный доклад о графических возможностях ISIS можно найти в разделе 2D графика (2D Graphics).

Масштаб и захват

Как правило, при разводке схемы полезна возможность изменения масштаба требуемой территории. Нажатие клавиши F6 или иконки Увеличить (Zoom In) увеличит масштаб вокруг текущей позиции мыши, или, в качестве альтернативы, зажмите клавишу SHIFT, и зажав левую кнопку мыши, выделите территорию, которую нужно увеличить. Чтобы уменьшить масштаб, нажмите клавишу F7 или иконку Уменьшить (Zoom Out), или, если вы хотите уменьшить так, чтобы видеть всю схему целиком, нажмите клавишу F8 или используйте колесо мыши, чтобы уменьшить или увеличить требуемую территорию. Соответствующие команды могут быть доступны меню Вид (View).

ISIS имеет очень мощные возможности, называемые Real Time Snap. Когда курсор мыши находится поблизости от конца вывода или проводника, местоположение курсора захватывается этими объектами. Это позволяет легко редактировать и управлять схемой. Эта возможность может быть найдена в меню Инструменты (Tools) и по умолчанию включена.

Более подробная информация о масштабе и захвате может быть найдена в справочной системе ISIS – Окно Редактора.

Трассировка соединений

Простейший способ соединения схемы – это использовать опцию автотрассировки проводника (Wire Auto Router) в меню Инструменты (Tools). Убедитесь, что она включена (должна быть видна отметка в меню слева от опции). Для более подробной информации смотрите раздел “Автотрассировка проводника” в Инструкции ISIS. Увеличьте PIC, чтобы все выводы были видны, затем поместите курсор мыши на конец вывода 6 (RB0/INT). Вы увидите маленький ‘х’–курсор на конце мыши. Это показывает, что мышь в правильной позиции для присоединения проводника к этому выводу. Левый клик мышью, чтобы начать соединение, и затем переместите мышь к выводу, соединенному с красным фонарём одного из светофоров. Когда вы снова получите ‘х’–курсор над этим выводом, кликните левой кнопкой мыши, чтобы завершить соединение. Повторите этот процесс для подключения обоих светофоров как показано образце схемы.

Пара вопросов о процессе разводки, заслуживающих упоминания:

  • Вы можете делать соединения в любом режиме – ISIS достаточно сообразителен, чтобы понять, что вы делаете.
  • Когда включена автотрассировка проводника (Wire Auto router), разводится вокруг препятствий и, как правило, ищется удобная траектория между соединениями. При этом способе, как правило, вам только нужно сделать левый клик на обоих концах соединения и предоставить ISIS возможность позаботиться о пути между ними.
  • ISIS автоматически переместит экран, если вы затронете границу окна редактора, перемещая проводник. Учитывая это, вы можете увеличить масштаб до подходящего уровня и, при условии, что вы знаете приблизительную позицию элемента-цели, просто подталкивайте экран, пока не увидите его. В качестве альтернативы, вы можете увеличивать и уменьшать масштаб, пока перемещаете проводник (используя клавиши F6 и F7).

В заключение, мы должны соединить вывод 4 с клеммой питания. Выберите иконку “Клемма” (Terminal) и выделите “Питание” (POWER) в переключателе объектов. Теперь сделайте левый клик на подходящем месте и поместите клемму. Выберите подходящую ориентацию и присоедините клемму к выводу 4, используя тот же способ, что и раньше.

На этом этапе рекомендуем вам загрузить законченную версию схемы – это избавит от любой неразберихи, если нарисованная вами версия в каком-то месте отличается от нашей! Также, если вы не приобрели библиотеку моделей pic-контроллеров, для того, чтобы продолжить, вы должны загрузить приготовленный файл примера.

Написание программы

Листинг исходной программы

Для успеха нашей консультации мы подготовили следующую программу, которая записывается в PIC для управления светофорами. Эта программа приготовлена в файле TL.ASM и может быть найдена в папке “SamplesTutorials”.


    ; PIC16F844 is the target processor
    LIST    p=16F84

    ; Include header file
    #include "P16F84.INC"

    ; Temporary storage
    CBLOCK 0x10
      state
      l1,l2
    ENDC

    org     0         ; Start up vector.
    goto    setports  ; Go to start up code.

    org     4         ; Interrupt vector.
halt
    goto    halt      ; Sit in endless loop and do nothing.

setports
    clrw              ; Zero in to W.
    movwf  PORTA      ; Ensure PORTA is zero before we enable it.
    movwf  PORTB      ; Ensure PORTB is zero before we enable it.
    bsf    STATUS,RP0 ; Select Bank 1
    clrw              ; Mask for all bits as outputs.
    movwf  TRISB      ; Set TRISB register.
    bcf    STATUS,RP0 ; Reselect Bank 0.

initialise
    clrw              ; Initial state.

    movwf  state      ; Set it.

loop
    call   getmask    ; Convert state to bitmask.
    movwf  PORTB      ; Write it to port.
    incf   state,W    ; Increment state in to W.
    andlw  0x04       ; Wrap it around.
    movwf  state      ; Put it back in to memory.
    call   wait       ; Wait :-)
    goto   loop       ; And loop :-)

    ; Function to return bitmask for output port
    ;for current state.

    ; The top nibble contains the bits for one set
    ;of lights and the lower nibble the bits for
    ;the other set. Bit 1 is red, 2 is amber  and
    ;bit three is green. Bit four is not used.
getmask
    movf   state,W ; Get state in to W.
    addwf  PCL,F   ; Add offset in W to PCL to calc.goto.
    retlw  0x41    ; state==0 is Green and Red.
    retlw  0x23    ; state==1 is Amber and Red/Amber

    retlw  0x14    ; state==3 is Red and Green
    retlw  0x32    ; state==4 is Red/Amber and Amber.

    ; Function using two loops to achieve a delay.
wait
    movlw  5
    movwf  l1

w1  call   wait2
    decfsz l1
    goto   w1

    return

wait2
    clrf   l2
w2
    decfsz l2
    goto   w2
    return
    END

На самом деле в коде есть предумышленная ошибка, но подробнее об этом позже…

Прикрепление исходного файла

Следующий этап – присоединить программу к нашей схеме, чтобы мы могли успешно моделировать ее поведение. Сделаем это через команды меню Исходник (Source). Теперь перейдите в меню Source и выберите команду “Добавить/удалить исходные файлы” (Add/Remove Source Files). Нажмите кнопку New, зайдите в папку “SamplesTutorials” и выберите файл TL.ASM. Нажмите “открыть” и файл появится в выпадающем списке имен файлов исходных кодов (Source Code Filename).

Теперь нужно выбрать программу формирования кода для файла. Для нашей цели подойдет программа MPASM. Эта опция будет доступна из выпадающего списка Code Generation Tool, выберите ее обычным способом, кликая левой кнопкой мыши(обратите внимание, что если вы планируете использовать новый ассемблер или компилятор, вам нужно зарегистрировать его, используя команду “Определить программу формирования кода” (Define Code Generation Tools)).

В завершение, необходимо установить с каким файлом работает процессор. В нашем примере это будет tl.hex (hex-файл, генерируемый MPASM, являющийся результатом трансляции tl.asm). Чтобы прикрепить этот файл к процессору, кликните на pic-контроллере сначала правой кнопкой мыши, а потом левой. Это откроет диалоговую форму редактирования элемента, которая содержит поле “Файл программы” (Program File). Если в нем еще не установлен tl.hex, то введите путь к файлу либо вручную, либо просматривая место, где находится файл, нажав ‘?’ справа от поля. Установив hex-файл, нажмите ОК, чтобы выйти из диалоговой формы.

Теперь мы прикрепили исходный файл к проекту и установили, какая будет использоваться программа формирования кода. Более детальное разъяснение системы управления исходными кодами доступно в данной документации далее.

Отладка программы

Моделирование схемы

Чтобы смоделировать работу схем, кликните левой кнопкой мыши по кнопке Play на анимационной модели в правом нижнем углу экрана. Строка состояния покажет время, в течение которого запущена анимация. Обратите внимание на то, что один из светофоров зеленый в то время как другой красный, на схеме также можно увидеть логические уровни на выводах. Однако заметьте, что светофоры не изменяют состояния. Это из-за того, что в код внесена предумышленная ошибка. На данном этапе это подходит для того, чтобы отладить нашу программу и найти проблему.

Режим отладки

Чтобы удостоверить, что мы тщательны в отладке, мы остановим текущее моделирование. Покончив с этим, вы можете начать отладку нажатием CTRL+F12. Появятся два окна – первое хранит текущие значения регистров, второе показывает исходный код программы. Любое из них может быть активировано из меню “Отладка” (Debug) вместе с совокупностью других информационных окон. Мы также хотим активировать смотровое окно (Watch Window), в котором мы можем наблюдать внесенные изменения в параметры состояния. Полное разъяснение этого элемента доступно в разделе, озаглавленном “Смотровое окно”, в данной документации.

Установка точки останова

Взгляните на программу, можно заметить, что она замкнута в повторяющемся цикле. Поэтому будет хорошей идеей перед тем, как начать, установить точку останова в начале этого цикла. Вы можете сделать это выделением мышью строки (по адресу 0005 и 000E), а затем нажатием F9. Затем нажмите F12, чтобы запустить прогон программы. Теперь вы увидите сообщение в строке состояния, показывающее, что достигнута цифровая точка останова, а также адрес счётчика команд. Он соответствует адресу первой точки, которую мы установили.

Список клавиш отладки можно найти в меню Debug, но мы, большей частью, будем использовать F11, чтобы пошагово отлаживать программу. Теперь нажмите F11 и заметьте, что красная стрелка слева переместилась вниз к следующей инструкции. Мы фактически выполнили инструкцию ‘clrw’, а затем остановились. Вы можете проверить это, взглянув на регистр W в окне регистров и обратив внимание, что он обнулен.

Теперь нужно определить, что должно произойти при выполнении следующей инструкции, а затем проверить, действительно ли это произошло. Для примера, следующая инструкция перемещает содержимое регистра “W” в PORT A, т.е. PORT A будет очищен. Выполнение этой инструкции и проверка окна регистров подтверждают, что это на самом деле так. Продолжайте в том же духе пока не достигните нашей второй точки останова, обратите внимание, что оба порта настроены на выход (как предписано регистром TRISB) и установлены в нули.

И так, мы остановились на вызове функции, у нас есть опция перешагивания через функции (Stepping Over) (нажатием клавиши F10), но для полноты мы прошагаем через каждую инструкцию. Нажатие здесь F11 переносит к первой выполняемой строке функции getmask. Шагнув вперед, мы видим, что операция перемещения была успешна, и что мы попадаем в правильном месте для добавления нулевого сдвига в нашей таблице соответствия. Следовательно, когда мы возвращаемся в основную программу, мы имеем “маску”, которую и ожидали. Делая следующий шаг и записывая маску в порт, мы можем видеть правильный результат на схеме. Еще один шаг для инкриментирования режима также успешен, что подтверждается окном регистров, где значение в регистре W увеличилось на 1.

Следующий шаг содержит инструкцию, предназначенную для охватывания режима нулями, когда он возрастет выше 3. Это, как можно увидеть из смотрового окна, не выполняется. Очевидно, что режим увеличился здесь до 1, что соответствует маске и верно для следующего выполнения цикла.

Поиск ошибки

Скрытый анализ показывает, что причина проблемы в побитовом И с четверкой вместо тройки. Режимы, которые мы хотим 0, 1, 2, 3 при побитовом И их с 4 дают 0. Вот почему, когда запущено моделирование, режим светофоров не меняется. Решение в простой замене проблемной инструкции на И с 3 вместо 4. Это означает, что режим увеличивается до 3, и когда регистр W увеличится до 4, режим будет обнулен. Альтернативное решение в проверке, когда ‘W’ возрастет до 4, и сбросе его в ноль.

Теги

CADCAD / САПР (система автоматизированного проектирования)ISISMCUProteus VSMМикроконтроллер

2. Порядок выполнения лабораторной работы

1)Запустить программу ISIS 7 Professional (Пуск – Программы –

Proteus 7 Professional — ISIS 7 Professional).

2)Собрать схему, показанную на рис. 2, для чего в основное поле редактора из библиотеки добавить следующие элементы:

— микроконтроллер AT90S8515; — 8 светодиодов LED-RED;

8 резисторов

(значение

сопротивления

резисторов рассчитать);

один

питающий

вывод +5V (в свойствах

вывода

выбрать

«VCC»).

Соединить

и

настроить элементы в

соответствии

со

схемой рис.2.

3)

Открыть

текстовый

блокнот

(Пуск – Программы –

Стандартные – Блокнот)

и

набрать

текст

программы

на

Рис. 2. Моделируемая схема на базе МК

Ассемблере

AVR, как

показано ниже. При наборе теста программы внимательно следите за всеми знаками. ;*************************************************************

;В реализуемой программе светодиоды мигают один раз в секунду.

;*************************************************************

.include «8515def.inc» ; Подключение внешней библиотеки с

; описанием символических имен и

; определением адресов регистров МК.

cseg

.org

0

.def

temp = r16

; Назначение имѐн временным регистрам.

.def

temp1= r17

.def

temp2= r18

rjmp init ; Вектор прерывания по включению питания.

.org 20

****** Подпрограмма формирования задержки 1сек ***************

delay1:

ldi

temp2, 25

d0:

ser

temp1

d1:

ldi

temp, 209

d2:

dec

temp

brne

d2

dec

temp1

brne

d1

dec

temp2

brne

d0

ret

;****Инициализация МК выполняется при включении питания, а также ; при сбросе кнопкой «RESET» или от сторожевого таймера *******

init

ldi

temp, low(RAMEND) ; Инициализация указателя стека

out

spl, temp

; в конце внутреннего ОЗУ

ldi

temp, high(RAMEND) ;

out

sph, temp

ser

temp

; temp = 0xFF. Команда устанавливает

; все разряды регистра temp в единицу.

out

DDRA, 0xFF

; Конфигурируем порт A на вывод данных.

;******Основная программа *************************************

main:

ser

temp

out

porta, temp ; Выключить светодиоды.

rcall delay

; Вызов подпрограммы формирования

; задержки 1с.

clr

temp

; temp = 0x00. Команда устанавливает

; все разряды регистра temp в ноль.

out

porta, 0x00

; Включить светодиоды.

rcall delay1

;Вызов подпрограммы формирования задержки1с.

rjmp main

;*************************************************************

Сохранить текстовый файл под названием «Miganie.txt» и заменить расширение .txt на .asm, в результате получим файл, содержащий код программы, написанный на Ассемблере микроконтроллера AVR, с

названием «Miganie.asm». В программе имеются синтаксические

ошибки и неверно используемые команды, которые необходимо исправить при отладке программы.

4)Подключить файл с исходным кодом программы к проекту (выбрав вкладку «Исходник» – Добавить/Удалить файлы исходника. В появившемся окне установить: целевой процессор U1 – AT90S8515, инструмент генерации кода — AVRASM2; имя файла исходника установить с помощью кнопки «Новый», где в появившемся окне выбрать созданный ранее файл «Miganie.asm».

5)Запустить программу, нажав кнопку «Пуск».

6)Отладить программу при наличии ошибок.

7)Проверить, как изменится работа программы при изменении частоты работы МК (в режиме моделирования нажать правой кнопкой мыши на МК AT90S8515 – Правка свойств, параметр «Clock Frequency»

по умолчанию 4 MHz).

8)Запустить симуляцию работы программы «по шагам», нажав на кнопку «шаг». Для просмотра кода строки, выполняемого МК необходимо выбрать вкладку «Отладка» – AVR Source Code – U1. Для

управления пошаговой работы программы используйте кнопки «шаг

с заходом» (или F11) и «шаг с выходом» (или Ctrl-F11, для пропуска работы цикла или подпрограммы). Разобраться с работой стековой

памяти и счётчика команд.

9) Изменить программу работы таким образом, чтобы светодиоды зажигались в последовательности бегущего огонька.

4.Контрольные вопросы

1)Назначение ССМ PROTEUS.

2)Назначение симулятора.

3)Последовательность создания модели в PROTEUS.

4)Порядок подключения исходной программы к проекту.

5)Назначение пошагового режима работы МК.

5.Содержание отчѐта по лабораторной работе

1)Цель работы.

2)Текст и алгоритм исходной и изменѐнной программы с комментариями по отладке программы.

3)Ответы на контрольные вопросы.

4)Заключение по выполненной работе.

В этой статье я хочу поделиться своим опытом и, в основном, рассказать как можно использовать ПО Proteus.

Начнем с информации для общего понимания.

Если всё очень сильно упростить, то Proteus Design Suite — это набор программ для проектирования электронных схем. ISIS Proteus — это одна из программ в данном пакете и именно она представляет больший интерес.

Зачем вообще нужен ISIS Proteus?

А нужен он для моделирования электронных схем. Вы, наверное, спросите — зачем мне изучать и использовать ISIS Proteus, если есть множество других программ, которые позволяют делать это. И я вам отвечу — ISIS Proteus может моделировать работу программируемых устройств: микропроцессоров, микроконтроллеров, DSP и проч. Вы только представьте, вы можете не покупая микроконтроллеры создать, проверить и отладить свой проект без малейшего вложения в покупку МК и прочих компонентов (например: резисторы, транзисторы, светодиоды, моторы, реле и т.д.).

Что понадобится для этого проекта?

Сначала — специализированное ПО. Поскольку в этом проекте я использовал Arduino, мне понадобится среда разработки Arduini IDE. https://www.arduino.cc/en/software — тут вы можете скачать его с официального сайта. Далее нам необходимо будет установить Proteus Design Suite. https://www.youtube.com/watch?v=td4D7BzbX2Q — в этом видео продемонстрировано, как правильно это сделать, всё просто и ничего лишнего.

Примечание: да, я знаю, что на данный момент вышла уже 8-я версия Proteus-а, но у меня и моих знакомых постоянно возникали проблемы с ней. Поэтому будем использовать 7-ю.

Что будем делать после установки?

7-я версия Proteus-а имеет в себе огромную библиотеку компонентов на любой вкус и цвет, но платформ Arduino в ней сначала нет. Нам необходимо это исправить. Скачать одну из таких библиотек можно на этом сайте -https://www.theengineeringprojects.com/2021/03/download-proteus-library-of-arduino-modules.html . Лучше скачивайте версию 2.0.

После скачивания вам нужно распаковать эти файлы и переместить в корневую папку Proteus-а. … Labcenter ElectronicsProteus 7 ProfessionalLIBRARY — именно в эту папку нужно распаковать данную библиотеку. https://www.youtube.com/watch?v=YF13YaGg3Mo — видео по теме.

Готово, теперь в библиотеке компонентов мы можем найти основные варианты платформы Arduino.

Теперь нам необходимо написать код для нашего проекта. В свою очередь, для демонстрации возможностей Proteus-а я возьму готовый код из примера, которые хранятся в IDE Arduino, а именно — Blink.

Обязательно нужно поставить галочку «Компиляция» в настройке Arduino IDE. Таким способом мы сможем получить бинарный файл с расширением .hex.

Далее мы компилируем нашу программу и для удобства из панели вывода сразу копируем в буфер ссылку на .hex файл. Пример на скриншоте ниже, но не переживайте, этот файл находиться в корневой папке проекта.

После написания кода и его компиляции нам необходимо построить схему в ISIS Proteus. Можете, конечно, посмотреть пару видео для того что бы разобраться в самой программе.

Вот такая простая схемка у меня получилась. Также нам нужно указать путь к бинарной прошивке Arduino, для этого необходимо двойным кликом по графическому компоненту ARD1 открыть его параметры и в разделе «Program File» указать путь к .hex файлу, который мы получили в ходе компиляции кода.

После того как мы указали путь к прошивке, нажимаем кнопку «Play» и наблюдаем мигание светодиода.

Думаю, что суть работы я достаточно просто изложил. Для того, что бы у вас была мотивация работать далее с этой программой и изучать её функционал ниже вы можете увидеть один из проектов, который я делал. Это схема имитации работы лифта. Как видите, здесь есть кнопки для вызова лифта, экран(на нем выводится номер этажа и другая полезная информация из других режимов работы системы), светодиоды(они дублируют информацию о положении лифта) и еще много других интересных систем.

P.S. Это моя первая статья, не судите её строго. Жду ваших комментариев.

В наш век новейших технологий уже не обязательно собирать какую-либо схему на макетной плате, дабы убедиться в ее работоспособности. Существуют программы-симуляторы для симулирования работы схем в реальном времени. Одной из них и является Proteus. Это довольно многофункциональная программа для симуляции различных схем. Собственно в состав Proteus’a входят программы с названиями ISIS (программа-симулятор) и ARES (трассировка печатных плат), в которой разводку плат можно трассировать автоматически, по предварительно составленной схеме в ISIS.

Начнем с ознакомления с интерфейсом. Для выбора компонентов нужно нажать на кнопку «P» в левом верхнем углу экрана (возле надписи «DEVICES»).

Выбор компонентов

После этого появится окно такого вида:

Библиотека компонентов

В столбце слева-классификация элементов, в столбце посередине сами элементы, в левом нижнем «окошке» — корпус элемента (если таковой имеется в библиотеке ARES), а в правом верхнем окне-собственно сам элемент, например я, выбрал микроконтроллер ATTINY13, вот так это выглядит:

Библиотека компонентов

Если вы не можете найти элемент, то можно воспользоваться функцией поиска. Для этого просто надо вбить полное или частичное название искомого элемента в графу, расположенную в верхнем левом углу и выбрать среди выданных результатов нужный вариант.

Теперь можно приступить к моделированию какой-нибудь схемы. Для начала можно попробовать «собрать» мультивибратор на 2-х транзисторах, по такой схеме:

Схема мультивибратора на 2-х транзисторах

Для выбора транзисторов жмем «P»-«Transistors» и выбираем наш 2N4410. Конденсаторы расположены под заголовком «Capacitors», резисторы в «Resistors», а светодиод в «Optoelectronics». Что касается батареи, то она размещена в группе «Simulator Primitives». Размещать компоненты желательно внутри рабочей области (синего прямоугольника). Далее следует выбрать автотрассировку связей, это делается либо через меню, либо через панель «быстрого доступа», второе более предпочтительно. Для активации автотрассировщика через панель, нужно нажать эту клавишу:

Активация автотрассировщика

Итак, автотрассировщик активирован, элементы размещены, теперь можно соединять их выводы по схеме. Соединив выводы, мы получили примерно такой результат:

Мультивибратора в Proteus

Схема составлена, теперь можно посмотреть, как она будет работать. Для этого нужно нажать на кнопку «play» в левом нижнем углу. Все! Ваша первая симуляция работы схемы успешно завершена! Теперь можете экспериментировать в полной мере, успехов вам!

P.S. О более сложных симуляциях, например схем на микроконтроллерах, а также о работе в ARES я расскажу в следующей статье.

Теги:

Ресин Е.
Опубликована: 2012 г.


0


Вознаградить

Я собрал
0

0

x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография

0

Средний балл статьи: 0
Проголосовало: 0 чел.

Суббота, 01.04.2023, 09:40
Приветствую Вас Гость | RSS
Главная | Каталог файлов | Регистрация | Вход
Меню сайта
  • Главная страница

  • О кафедре

  • Преподаватели

  • Дисциплины

  • Каталог файлов

  • Гостевая книга

  • Фотоальбомы

  • Выпускники

  • Сайт университета

  • ИСТИ (Festo)

  • Абитуриенту

  • Преподавателям

  • Факультет

Категории раздела
Первый курс(дневной)

Второй курс(дневной)

Третий курс(дневной)

Четвертый курс(дневной)

Пятый курс(дневной)

Первый курс(заочный)

Второй курс (заочный)

Третий курс (заочный)

Четвертый курс (заочный)

Пятый курс (заочный)

Шестой курс (заочный)

Форма входа
Логин:
Пароль:
запомнить

Забыл пароль | Регистрация

Статистика

Онлайн всего: 1

Гостей: 1

Пользователей: 0

Поиск
Главная » Файлы » Методички » Второй курс(дневной)

Компьютерная практика. Методичка по Proteus

[ Скачать (822.8 Kb)

]

15.06.2011, 13:36
  • 1
  • 2
  • 3
  • 4
  • 5

Категория: Второй курс(дневной) | Добавил: vig220

Просмотров: 3507 | Загрузок: 670

| Рейтинг: 5.0/1

Сайт управляется системой uCoz Кафедра АТПП © 2023

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *